Biblio

Filters: Author is Zeng, Jie  [Clear All Filters]
2020-09-08
Wang, Meng, Zhan, Ming, Yu, Kan, Deng, Yi, Shi, Yaqin, Zeng, Jie.  2019.  Application of Bit Interleaving to Convolutional Codes for Short Packet Transmission. 2019 IEEE International Conference on Industrial Cyber Physical Systems (ICPS). :425–429.
In recent years, the demand for high reliability in industrial wireless communication has been increasing. To meet the strict requirement, many researchers have studied various bit interleaving coding schemes for long packet transmission in industrial wireless networks. Current research shows that the use of bit interleaving structure can improve the performance of the communication system for long packet transmission, but to improve reliability of industrial wireless communications by combining the bit interleaving and channel coding for short packets still requires further analysis. With this aim, bit interleaving structure is applied to convolution code coding scheme for short packet transmission in this paper. We prove that the use of interleaver fail to improve the reliability of data transmission under the circumstance of short packet transmission.
2019-11-12
Zhang, Xian, Ben, Kerong, Zeng, Jie.  2018.  Cross-Entropy: A New Metric for Software Defect Prediction. 2018 IEEE International Conference on Software Quality, Reliability and Security (QRS). :111-122.

Defect prediction is an active topic in software quality assurance, which can help developers find potential bugs and make better use of resources. To improve prediction performance, this paper introduces cross-entropy, one common measure for natural language, as a new code metric into defect prediction tasks and proposes a framework called DefectLearner for this process. We first build a recurrent neural network language model to learn regularities in source code from software repository. Based on the trained model, the cross-entropy of each component can be calculated. To evaluate the discrimination for defect-proneness, cross-entropy is compared with 20 widely used metrics on 12 open-source projects. The experimental results show that cross-entropy metric is more discriminative than 50% of the traditional metrics. Besides, we combine cross-entropy with traditional metric suites together for accurate defect prediction. With cross-entropy added, the performance of prediction models is improved by an average of 2.8% in F1-score.