Biblio
Deadlock is one of the critical problems in the message passing interface. At present, most techniques for detecting the MPI deadlock issue rely on exhausting all execution paths of a program, which is extremely inefficient. In addition, with the increasing number of wildcards that receive events and processes, the number of execution paths raises exponentially, further worsening the situation. To alleviate the problem, we propose a deadlock detection approach called SAMPI based on match-sets to avoid exploring execution paths. In this approach, a match detection rule is employed to form the rough match-sets based on Lazy Lamport Clocks Protocol. Then we design three refining algorithms based on the non-overtaking rule and MPI communication mechanism to refine the match-sets. Finally, deadlocks are detected by analyzing the refined match-sets. We performed the experimental evaluation on 15 various programs, and the experimental results show that SAMPI is really efficient in detecting deadlocks in MPI programs, especially in handling programs with many interleavings.
ISSN: 2168-9253
The large amounts of synchrophasor data obtained by Phasor Measurement Units (PMUs) provide dynamic visibility into power systems. Extracting reliable information from the data can enhance power system situational awareness. The data quality often suffers from data losses, bad data, and cyber data attacks. Data privacy is also an increasing concern. In this paper, we discuss our recently proposed framework of data recovery, error correction, data privacy enhancement, and event identification methods by exploiting the intrinsic low-dimensional structures in the high-dimensional spatial-temporal blocks of PMU data. Our data-driven approaches are computationally efficient with provable analytical guarantees. The data recovery method can recover the ground-truth data even if simultaneous and consecutive data losses and errors happen across all PMU channels for some time. We can identify PMU channels that are under false data injection attacks by locating abnormal dynamics in the data. The data recovery method for the operator can extract the information accurately by collectively processing the privacy-preserving data from many PMUs. A cyber intruder with access to partial measurements cannot recover the data correctly even using the same approach. A real-time event identification method is also proposed, based on the new idea of characterizing an event by the low-dimensional subspace spanned by the dominant singular vectors of the data matrix.
As today's networks become larger and more complex, the Distributed Denial of Service (DDoS) flooding attack threats may not only come from the outside of networks but also from inside, such as cloud computing network where exists multiple tenants possibly containing malicious tenants. So, the need of source-based defense mechanism against such attacks is pressing. In this paper, we mainly focus on the source-based defense mechanism against Botnet-based DDoS flooding attack through combining the power of Software-Defined Networking (SDN) and sample flow (sFlow) technology. Firstly, we defined a metric to measure the essential features of this kind attack which means distribution and collaboration. Then we designed a simple detection algorithm based on statistical inference model and response scheme through the abilities of SDN. Finally, we developed an application to realize our idea and also tested its effect on emulation network with real network traffic. The result shows that our mechanism could effectively detect DDoS flooding attack originated in SDN environment and identify attack flows for avoiding the harm of attack spreading to target or outside. We advocate the advantages of SDN in the area of defending DDoS attacks, because it is difficult and laborious to organize selfish and undisciplined traditional distributed network to confront well collaborative DDoS flooding attacks.