Biblio

Filters: Author is Wang, Qing  [Clear All Filters]
2023-05-19
Wang, Qing, Zhang, Lizhe, Lu, Xin, Wang, Kenian.  2022.  A Multi-authority CP-ABE Scheme based on Cloud-Chain Fusion for SWIM. 2022 IEEE Intl Conf on Parallel & Distributed Processing with Applications, Big Data & Cloud Computing, Sustainable Computing & Communications, Social Computing & Networking (ISPA/BDCloud/SocialCom/SustainCom). :213—219.
SWIM (System Wide Information Management) has become the development direction of A TM (Air Traffic Management) system by providing interoperable services to promote the exchange and sharing of data among various stakeholders. The premise of data sharing is security, and the access control has become the key guarantee for the secure sharing and exchange. The CP-ABE scheme (Ciphertext Policy Attribute-Based Encryption) can realize one-to-many access control, which is suitable for the characteristics of SWIM environment. However, the combination of the existing CP-ABE access control and SWIM has following constraints. 1. The traditional single authority CP-ABE scheme requires unconditional trust in the authority center. Once the authority center is corrupted, the excessive authority of the center may lead to the complete destruction of system security. So, SWIM with a large user group and data volume requires multiple authorities CP-ABE when performing access control. 2. There is no unified management of users' data access records. Lack of supervision on user behavior make it impossible to effectively deter malicious users. 3. There are a certain proportion of lightweight data users in SWIM, such as aircraft, users with handheld devices, etc. And their computing capacity becomes the bottleneck of data sharing. Aiming at these issues above, this paper based on cloud-chain fusion basically proposes a multi-authority CP-ABE scheme, called the MOV ATM scheme, which has three advantages. 1. Based on a multi-cloud and multi-authority CP-ABE, this solution conforms to the distributed nature of SWIM; 2. This scheme provides outsourced computing and verification functions for lightweight users; 3. Based on blockchain technology, a blockchain that is maintained by all stakeholders of SWIM is designed. It takes user's access records as transactions to ensure that access records are well documented and cannot be tampered with. Compared with other schemes, this scheme adds the functions of multi-authority, outsourcing, verifiability and auditability, but do not increase the decryption cost of users.
2020-09-04
Zhang, Xiao, Wang, Yanqiu, Wang, Qing, Zhao, Xiaonan.  2019.  A New Approach to Double I/O Performance for Ceph Distributed File System in Cloud Computing. 2019 2nd International Conference on Data Intelligence and Security (ICDIS). :68—75.
Block storage resources are essential in an Infrastructure-as-a-Service(IaaS) cloud computing system. It is used for storing virtual machines' images. It offers persistent storage service even the virtual machine is off. Distribute storage systems are used to provide block storage services in IaaS, such as Amazon EBS, Cinder, Ceph, Sheepdog. Ceph is widely used as the backend block storage service of OpenStack platform. It converts block devices into objects with the same size and saves them on the local file system. The performance of block devices provided by Ceph is only 30% of hard disks in many cases. One of the key issues that affect the performance of Ceph is the three replicas for fault tolerance. But our research finds that replicas are not the real reason slow down the performance. In this paper, we present a new approach to accelerate the IO operations. The experiment results show that by using our storage engine, Ceph can offer faster IO performance than the hard disk in most cases. Our new storage engine provides more than three times up than the original one.
2020-03-02
Wang, Qing, Wang, Zengfu, Guo, Jun, Tahchi, Elias, Wang, Xinyu, Moran, Bill, Zukerman, Moshe.  2019.  Path Planning of Submarine Cables. 2019 21st International Conference on Transparent Optical Networks (ICTON). :1–4.
Submarine optical-fiber cables are key components in the conveying of Internet data, and their failures have costly consequences. Currently, there are over a million km of such cables empowering the Internet. To carry the ever-growing Internet traffic, additional 100,000s of km of cables will be needed in the next few years. At an average cost of \$28,000 per km, this entails investments of billions of dollars. In current industry practice, cable paths are planned manually by experts. This paper surveys our recent work on cable path planning algorithms, where we use several methods to plan cable paths taking account of a range of cable risk factors in addition to cable costs. Two methods, namely, the fast marching method (FMM) and the Dijkstra's algorithm are applied here to long-haul cable path design in a new geographical region. A specific example is given to demonstrate the benefit of the FMM-based method in terms of the better path planning solutions over the Dijkstra's algorithm.
2019-12-16
Wang, Kuang-Ching, Brooks, Richard R., Barrineau, Geddings, Oakley, Jonathan, Yu, Lu, Wang, Qing.  2018.  Internet Security Liberated via Software Defined Exchanges. Proceedings of the 2018 ACM International Workshop on Security in Software Defined Networks & Network Function Virtualization. :19–22.
With software defined networking and network function virtualization technologies, networks can be programmed to have customized processing and paths for different traffic at manageable costs and for massive numbers of applications. Now, picture a future Internet where each entity - a person, an organization, or an autonomous system - has the ability to choose how traffic in their respective network sessions is routed and processed between itself and its counterparts. The network is, essentially, liberated from today's homogeneous IP-based routing and limited connection options. To realize such a network paradigm, we propose a software defined exchange architecture that can provide the needed network programmability, session-level customization, and scale. We present a case study for traffic-analysis-resistant communication among individuals, campuses, or web services, where IP addresses no longer need to have a one-to-one correspondence with service providers.