Biblio
Filters: Author is Hussain, Fatima [Clear All Filters]
A Novel TCP/IP Header Hijacking Attack on SDN. IEEE INFOCOM 2022 - IEEE Conference on Computer Communications Workshops (INFOCOM WKSHPS). :1–2.
.
2022. Middlebox is primarily used in Software-Defined Network (SDN) to enhance operational performance, policy compliance, and security operations. Therefore, security of the middlebox itself is essential because incorrect use of the middlebox can cause severe cybersecurity problems for SDN. Existing attacks against middleboxes in SDN (for instance, middleboxbypass attack) use methods such as cloned tags from the previous packets to justify that the middlebox has processed the injected packet. Flowcloak as the latest solution to defeat such an attack creates a defence using a tag by computing the hash of certain parts of the packet header. However, the security mechanisms proposed to mitigate these attacks are compromise-able since all parts of the packet header can be imitated, leaving the middleboxes insecure. To demonstrate our claim, we introduce a novel attack against SDN middleboxes by hijacking TCP/IP headers. The attack uses crafted TCP/IP headers to receive the tags and signatures and successfully bypasses the middleboxes.
API Security in Large Enterprises: Leveraging Machine Learning for Anomaly Detection. 2021 International Symposium on Networks, Computers and Communications (ISNCC). :1–6.
.
2021. Large enterprises offer thousands of micro-services applications to support their daily business activities by using Application Programming Interfaces (APIs). These applications generate huge amounts of traffic via millions of API calls every day, which is difficult to analyze for detecting any potential abnormal behaviour and application outage. This phenomenon makes Machine Learning (ML) a natural choice to leverage and analyze the API traffic and obtain intelligent predictions. This paper proposes an ML-based technique to detect and classify API traffic based on specific features like bandwidth and number of requests per token. We employ a Support Vector Machine (SVM) as a binary classifier to classify the abnormal API traffic using its linear kernel. Due to the scarcity of the API dataset, we created a synthetic dataset inspired by the real-world API dataset. Then we used the Gaussian distribution outlier detection technique to create a training labeled dataset simulating real-world API logs data which we used to train the SVM classifier. Furthermore, to find a trade-off between accuracy and false positives, we aim at finding the optimal value of the error term (C) of the classifier. The proposed anomaly detection method can be used in a plug and play manner, and fits into the existing micro-service architecture with little adjustments in order to provide accurate results in a fast and reliable way. Our results demonstrate that the proposed method achieves an F1-score of 0.964 in detecting anomalies in API traffic with a 7.3% of false positives rate.
Intelligent Service Mesh Framework for API Security and Management. 2019 IEEE 10th Annual Information Technology, Electronics and Mobile Communication Conference (IEMCON). :0735—0742.
.
2019. With the advancements in enterprise-level business development, the demand for new applications and services is overwhelming. For the development and delivery of such applications and services, enterprise businesses rely on Application Programming Interfaces (APIs). API management and classification is a cumbersome task considering the rapid increase in the number of APIs, and API to API calls. API Mashups, domain APIs and API service mesh are a few recommended techniques for ease of API creation, management, and monitoring. API service mesh is considered as one of the techniques in this regard, in which the service plane and the control plane are separated for improving efficiency as well as security. In this paper, we propose and implement a security framework for the creation of a secure API service mesh using Istio and Kubernetes. Afterwards, we propose an smart association model for automatic association of new APIs to already existing categories of service mesh. To the best of our knowledge, this smart association model is the first of its kind.
Probabilistic Estimation of Honeypot Detection in Internet of Things Environment. 2019 International Conference on Computing, Networking and Communications (ICNC). :191–196.
.
2019. With the emergence of the Internet of Things (IoT) and the increasing number of resource-constrained interconnected smart devices, there is a noticeable increase in the number of cyber security crimes. In the face of the possible attacks on IoT networks such as network intrusion, denial of service, spoofing and so on, there is a need to develop efficient methods to locate vulnerabilities and mitigate attacks in IoT networks. Without loss of generality, we consider only intrusion-related threats to IoT. A honeypot is a system used to understand the potential dynamic threats and act as a proactive measure to detect any intrusion into the network. It is used as a trap for intruders to control unauthorized access to the network by analyzing malicious traffic. However, a sophisticated attacker can detect the presence of a honeypot and abort the intrusion mission. Therefore it is essential for honeypots to be undetectable. In this paper, we study and analyze possible techniques for SSH and telnet honeypot detection. Moreover, we propose a new methodology for probabilistic estimation of honeypot detection and an automated software implemented this methodology.
Taxonomy-Based Intelligent Malware Detection Framework. 2019 IEEE Global Communications Conference (GLOBECOM). :1–6.
.
2019. Timely detection of a malicious piece of code accurately, in an enterprise network or in an individual device, before it propagates and mutate itself, is one of the most challenging tasks in the domain of cyber security. Millions of variants of each latest malware are released every day and each of these variants have a unique static signature. Conventional anti-malware tools use signatures and static heuristics of malware to segregate them from legitimate files, which is not an effective technique because of the number of malware variants released every passing day. To overcome the fundamental flaw of operational techniques, we propose a framework that generalizes the static and dynamic malwarefeaturesthatareusedtotrainmultiplemachinelearning algorithms. The generalization of clean and malicious features enables the framework to accurately differentiate between clean and malicious files.
A New Machine Learning-based Collaborative DDoS Mitigation Mechanism in Software-Defined Network. 2018 14th International Conference on Wireless and Mobile Computing, Networking and Communications (WiMob). :1–8.
.
2018. Software Defined Network (SDN) is a revolutionary idea to realize software-driven network with the separation of control and data planes. In essence, SDN addresses the problems faced by the traditional network architecture; however, it may as well expose the network to new attacks. Among other attacks, distributed denial of service (DDoS) attacks are hard to contain in such software-based networks. Existing DDoS mitigation techniques either lack in performance or jeopardize the accuracy of the attack detection. To fill the voids, we propose in this paper a machine learning-based DDoS mitigation technique for SDN. First, we create a model for DDoS detection in SDN using NSL-KDD dataset and then after training the model on this dataset, we use real DDoS attacks to assess our proposed model. Obtained results show that the proposed technique equates favorably to the current techniques with increased performance and accuracy.