Biblio

Filters: Author is Kerrache, Chaker Abdelaziz  [Clear All Filters]
2020-01-21
Benmoussa, Ahmed, Tahari, Abdou el Karim, Lagaa, Nasreddine, Lakas, Abderrahmane, Ahmad, Farhan, Hussain, Rasheed, Kerrache, Chaker Abdelaziz, Kurugollu, Fatih.  2019.  A Novel Congestion-Aware Interest Flooding Attacks Detection Mechanism in Named Data Networking. 2019 28th International Conference on Computer Communication and Networks (ICCCN). :1–6.
Named Data Networking (NDN) is a promising candidate for future internet architecture. It is one of the implementations of the Information-Centric Networking (ICN) architectures where the focus is on the data rather than the owner of the data. While the data security is assured by definition, these networks are susceptible of various Denial of Service (DoS) attacks, mainly Interest Flooding Attacks (IFA). IFAs overwhelm an NDN router with a huge amount of interests (Data requests). Various solutions have been proposed in the literature to mitigate IFAs; however; these solutions do not make a difference between intentional and unintentional misbehavior due to the network congestion. In this paper, we propose a novel congestion-aware IFA detection and mitigation solution. We performed extensive simulations and the results clearly depict the efficiency of our proposal in detecting truly occurring IFA attacks.
2019-12-18
Mohammed, Saif Saad, Hussain, Rasheed, Senko, Oleg, Bimaganbetov, Bagdat, Lee, JooYoung, Hussain, Fatima, Kerrache, Chaker Abdelaziz, Barka, Ezedin, Alam Bhuiyan, Md Zakirul.  2018.  A New Machine Learning-based Collaborative DDoS Mitigation Mechanism in Software-Defined Network. 2018 14th International Conference on Wireless and Mobile Computing, Networking and Communications (WiMob). :1–8.
Software Defined Network (SDN) is a revolutionary idea to realize software-driven network with the separation of control and data planes. In essence, SDN addresses the problems faced by the traditional network architecture; however, it may as well expose the network to new attacks. Among other attacks, distributed denial of service (DDoS) attacks are hard to contain in such software-based networks. Existing DDoS mitigation techniques either lack in performance or jeopardize the accuracy of the attack detection. To fill the voids, we propose in this paper a machine learning-based DDoS mitigation technique for SDN. First, we create a model for DDoS detection in SDN using NSL-KDD dataset and then after training the model on this dataset, we use real DDoS attacks to assess our proposed model. Obtained results show that the proposed technique equates favorably to the current techniques with increased performance and accuracy.