Biblio
Filters: Author is Li, Lin [Clear All Filters]
IP Trading System with Blockchain on Web-EDA. 2020 IEEE 14th International Conference on Anti-counterfeiting, Security, and Identification (ASID). :164—168.
.
2020. As the scale of integrated circuits continues to expand, electronic design automation (EDA) and intellectual property (IP) reuse play an increasingly important role in the integrated circuit design process. Although many Web-EDA platforms have begun to provide online EDA software to reduce the threshold for the use of EDA tools, IP protection on the Web- EDA platform is an issue. This article uses blockchain technology to design an IP trading system for the Web-EDA platform to achieve mutual trust and transactions between IP owners and users. The structure of the IP trading system is described in detail, and a blockchain wallet for the Web-EDA platform is developed.
Automatic XSS Detection and Automatic Anti-Anti-Virus Payload Generation. 2019 International Conference on Cyber-Enabled Distributed Computing and Knowledge Discovery (CyberC). :71–76.
.
2019. In the Web 2.0 era, user interaction makes Web application more diverse, but brings threats, among which XSS vulnerability is the common and pernicious one. In order to promote the efficiency of XSS detection, this paper investigates the parameter characteristics of malicious XSS attacks. We identify whether a parameter is malicious or not through detecting user input parameters with SVM algorithm. The original malicious XSS parameters are deformed by DQN algorithm for reinforcement learning for rule-based WAF to be anti-anti-virus. Based on this method, we can identify whether a specific WAF is secure. The above model creates a more efficient automatic XSS detection tool and a more targeted automatic anti-anti-virus payload generation tool. This paper also explores the automatic generation of XSS attack codes with RNN LSTM algorithm.
Delay-Aware Secure Computation Offloading Mechanism in a Fog-Cloud Framework. 2018 IEEE Intl Conf on Parallel Distributed Processing with Applications, Ubiquitous Computing Communications, Big Data Cloud Computing, Social Computing Networking, Sustainable Computing Communications (ISPA/IUCC/BDCloud/SocialCom/SustainCom). :346–353.
.
2018. Fog-Cloud framework is being regarded as a more promising technology to provide performance guarantee for IoT applications, which not only have higher requirements on computation resources, but also are delay and/or security sensitive. In this framework, a delay and security-sensitive computation task is usually divided into several sub-tasks, which could be offloaded to either fog or cloud computing servers, referred to as offloading destinations. Sub-tasks may exchange information during their processing and then have requirement on transmission bandwidth. Different destinations produce different completion delays of a sub-task, affecting the corresponding task delay. The existing offloading approaches either considered only a single type of offloading destinations or ignored delay and/or security constraint. This paper studies a computation offloading problem in the fog-cloud scenario where not only computation and security capabilities of offloading destinations may be different, but also bandwidth and delay of links may be different. We first propose a joint offloading approach by formulating the problem as a form of Mixed Integer Programming Multi-Commodity Flow to maximize the fog-cloud provider's revenue without sacrificing performance and security requirements of users. We also propose a greedy algorithm for the problem. Extensive simulation results under various network scales show that the proposed computation offloading mechanism achieves higher revenue than the conventional single-type computation offloading under delay and security constraints.