Biblio

Filters: Author is Cao, Jin  [Clear All Filters]
2022-07-12
Xu, Zhengwei, Ge, Yuan, Cao, Jin, Yang, Shuquan, Lin, Qiyou, Zhou, Xu.  2021.  Robustness Analysis of Cyber-Physical Power System Based on Adjacent Matrix Evolution. 2021 China Automation Congress (CAC). :2104—2109.
Considering the influence of load, This paper proposes a robust analysis method of cyber-physical power system based on the evolution of adjacency matrix. This method uses the load matrix to detect whether the system has overload failure, utilizes the reachable matrix to detect whether the system has unconnected failure, and uses the dependency matrix to reveal the cascading failure mechanism in the system. Finally, analyze the robustness of the cyber-physical power system. The IEEE30 standard node system is taken as an example for simulation experiment, and introduced the connectivity index and the load loss ratio as evaluation indexes. The robustness of the system is evaluated and analyzed by comparing the variation curves of connectivity index and load loss ratio under different tolerance coefficients. The results show that the proposed method is feasible, reduces the complexity of graph-based attack methods, and easy to research and analyze.
2021-06-30
Ma, Ruhui, Cao, Jin, Feng, Dengguo, Li, Hui, Niu, Ben, Li, Fenghua, Yin, Lihua.  2020.  A Secure Authentication Scheme for Remote Diagnosis and Maintenance in Internet of Vehicles. 2020 IEEE Wireless Communications and Networking Conference (WCNC). :1—7.
Due to the low latency and high speed of 5G networks, the Internet of Vehicles (IoV) under the 5G network has been rapidly developed and has broad application prospects. The Third Generation Partnership Project (3GPP) committee has taken remote diagnosis as one of the development cores of IoV. However, how to ensure the security of remote diagnosis and maintenance services is also a key point to ensure vehicle safety, which is directly related to the safety of vehicle passengers. In this paper, we propose a secure and efficient authentication scheme based on extended chebyshev chaotic maps for remote diagnosis and maintenance in IoVs. In the proposed scheme, to provide strong security, anyone, such as the vehicle owner or the employee of the Vehicle Service Centre (VSC), must enter the valid biometrics and password in order to enjoy or provide remote diagnosis and maintenance services, and the vehicle and the VSC should authenticate each other to ensure that they are legitimate. The security analysis and performance evaluation results show that the proposed scheme can provide robust security with ideal efficiency.
2020-05-26
Fu, Yulong, Li, Guoquan, Mohammed, Atiquzzaman, Yan, Zheng, Cao, Jin, Li, Hui.  2019.  A Study and Enhancement to the Security of MANET AODV Protocol Against Black Hole Attacks. 2019 IEEE SmartWorld, Ubiquitous Intelligence Computing, Advanced Trusted Computing, Scalable Computing Communications, Cloud Big Data Computing, Internet of People and Smart City Innovation (SmartWorld/SCALCOM/UIC/ATC/CBDCom/IOP/SCI). :1431–1436.
Mobile AdHoc Networks (MANET) can be fast implemented, and it is very popular in many specific network requirements, such as UAV (Unmanned Aerial Unit), Disaster Recovery and IoT (Internet of Things) etc. However, MANET is also vulnerable. AODV (Ad hoc On-Demand Distance Vector Routing) protocol is one type of MANET routing protocol and many attacks can be implemented to break the connections on AODV based AdHoc networks. In this article, aim of protecting the MANET security, we modeled the AODV protocol with one type of Automata and analyzed the security vulnerabilities of it; then based on the analyzing results, we proposed an enhancement to AODV protocol to against the Black Hole Attacks. We also implemented the proposed enhancement in NS3 simulator and verified the correctness, usability and efficiency.
2020-01-21
Luo, Yurong, Cao, Jin, Ma, Maode, Li, Hui, Niu, Ben, Li, Fenghua.  2019.  DIAM: Diversified Identity Authentication Mechanism for 5G Multi-Service System. 2019 International Conference on Computing, Networking and Communications (ICNC). :418–424.

The future fifth-generation (5G) mobile communications system has already become a focus around the world. A large number of late-model services and applications including high definition visual communication, internet of vehicles, multimedia interaction, mobile industry automation, and etc, will be added to 5G network platform in the future. Different application services have different security requirements. However, the current user authentication for services and applications: Extensible Authentication Protocol (EAP) suggested by the 3GPP committee, is only a unitary authentication model, which is unable to meet the diversified security requirements of differentiated services. In this paper, we present a new diversified identity management as well as a flexible and composable three-factor authentication mechanism for different applications in 5G multi-service systems. The proposed scheme can provide four identity authentication methods for different security levels by easily splitting or assembling the proposed three-factor authentication mechanism. Without a design of several different authentication protocols, our proposed scheme can improve the efficiency, service of quality and reduce the complexity of the entire 5G multi-service system. Performance analysis results show that our proposed scheme can ensure the security with ideal efficiency.