Biblio
In the field of network traffic analysis, Deep Packet Inspection (DPI) technology is widely used at present. However, the increase in network traffic has brought tremendous processing pressure on the DPI. Consequently, detection speed has become the bottleneck of the entire application. In order to speed up the traffic detection of DPI, a lot of research works have been applied to improve signature matching algorithms, which is the most influential factor in DPI performance. In this paper, we present a novel method from a different angle called Precisely Guided Signature Matching (PGSM). Instead of matching packets with signature directly, we use supervised learning to automate the rules of specific protocol in PGSM. By testing the performance of a packet in the rules, the target packet could be decided when and which signatures should be matched with. Thus, the PGSM method reduces the number of aimless matches which are useless and numerous. After proposing PGSM, we build a framework called PGSM-DPI to verify the effectiveness of guidance rules. The PGSM-DPI framework consists of PGSM method and open source DPI library. The framework is running on a distributed platform with better throughput and computational performance. Finally, the experimental results demonstrate that our PGSM-DPI can reduce 59.23% original DPI time and increase 21.31% throughput. Besides, all source codes and experimental results can be accessed on our GitHub.
The future fifth-generation (5G) mobile communications system has already become a focus around the world. A large number of late-model services and applications including high definition visual communication, internet of vehicles, multimedia interaction, mobile industry automation, and etc, will be added to 5G network platform in the future. Different application services have different security requirements. However, the current user authentication for services and applications: Extensible Authentication Protocol (EAP) suggested by the 3GPP committee, is only a unitary authentication model, which is unable to meet the diversified security requirements of differentiated services. In this paper, we present a new diversified identity management as well as a flexible and composable three-factor authentication mechanism for different applications in 5G multi-service systems. The proposed scheme can provide four identity authentication methods for different security levels by easily splitting or assembling the proposed three-factor authentication mechanism. Without a design of several different authentication protocols, our proposed scheme can improve the efficiency, service of quality and reduce the complexity of the entire 5G multi-service system. Performance analysis results show that our proposed scheme can ensure the security with ideal efficiency.
In this paper, a novel secure information exchange scheme has been proposed for MIMO vehicular ad hoc networks (VANETs) through physical layer approach. In the scheme, a group of On Board Units (OBUs) exchange information with help of one Road Side Unit (RSU). By utilizing the key signal processing technique, i.e., Direction Rotation Alignment technique, the information to be exchanged of the two neighbor OBUs are aligned into a same direction to form summed signal at RSU or external eavesdroppers. With such summed signal, the RSU or the eavesdropper cannot recover the individual information from the OBUs. By regulating the transmission rate for each OBU, the information theoretic security could be achieved. The secrecy sum-rates of the proposed scheme are analyzed following the scheme. Finally, the numerical results are conducted to demonstrate the theoretical analysis.