Biblio

Filters: Author is Voyiatzis, Artemios G.  [Clear All Filters]
2018-02-28
Judmayer, Aljosha, Ullrich, Johanna, Merzdovnik, Georg, Voyiatzis, Artemios G., Weippl, Edgar.  2017.  Lightweight Address Hopping for Defending the IPv6 IoT. Proceedings of the 12th International Conference on Availability, Reliability and Security. :20:1–20:10.
The rapid deployment of IoT systems on the public Internet is not without concerns for the security and privacy of consumers. Security in IoT systems is often poorly engineered and engineering for privacy does notseemtobea concern for vendors at all. Thecombination of poor security hygiene and access to valuable knowledge renders IoT systems a much-sought target for attacks. IoT systems are not only Internet-accessible but also play the role of servers according to the established client-server communication model and are thus configured with static and/or easily predictable IPv6 addresses, rendering them an easy target for attacks. We present 6HOP, a novel addressing scheme for IoT devices. Our proposal is lightweight in operation, requires minimal administration overhead, and defends against reconnaissance attacks, address based correlation as well as denial-of-service attacks. 6HOP therefore exploits the ample address space available in IPv6 networks and provides effective protection this way.
2018-05-16
Khan, Zeeshan Ali, Ullrich, Johanna, Voyiatzis, Artemios G., Herrmann, Peter.  2017.  A Trust-based Resilient Routing Mechanism for the Internet of Things. Proceedings of the 12th International Conference on Availability, Reliability and Security. :27:1–27:6.
Local-area networks comprising the Internet of Things (IoT) consist mainly of devices that have limited processing capabilities and face energy constraints. This has an implication on developing security mechanisms, as they require significant computing resources. In this paper, we design a trust-based routing solution with IoT devices in mind. Specifically, we propose a trust-based approach for managing the reputation of every node of an IoT network. The approach is based on the emerging Routing Protocol for Low power and Lossy networks (RPL). The proposed solution is simulated for its routing resilience and compared with two other variants of RPL.
2018-05-01
Neuner, Sebastian, Voyiatzis, Artemios G., Schmiedecker, Martin, Weippl, Edgar R..  2017.  Timestamp Hiccups: Detecting Manipulated Filesystem Timestamps on NTFS. Proceedings of the 12th International Conference on Availability, Reliability and Security. :33:1–33:6.

Redundant capacity in filesystem timestamps is recently proposed in the literature as an effective means for information hiding and data leakage. Here, we evaluate the steganographic capabilities of such channels and propose techniques to aid digital forensics investigation towards identifying and detecting manipulated filesystem timestamps. Our findings indicate that different storage media and interfaces exhibit different timestamp creation patterns. Such differences can be utilized to characterize file source media and increase the analysis capabilities of the incident response process.

2017-10-27
Pirpilidis, Filippos, Voyiatzis, Artemios G., Pyrgas, Lambros, Kitsos, Paris.  2016.  An Efficient Reconfigurable Ring Oscillator for Hardware Trojan Detection. Proceedings of the 20th Pan-Hellenic Conference on Informatics. :66:1–66:6.

The threat of inserting malicious logic in hardware design is increasing as the digital supply chains are becoming more deep and span the whole globe. Ring oscillators (ROs) can be used to detect deviations of circuit operations due to changes of its layout caused by the insertion of a hardware Trojan horse (Trojan). The placement and the length of the ring oscillator are two important parameters that define an RO sensitivity and capability to detect malicious alternations. We propose and study the use of ring oscillators with variable lengths, configurable at the runtime. Such oscillators push further the envelope for the attackers, as their design must be undetectable by all supported lengths. We study the efficiency of our proposal on defending against a family of hardware Trojans against an implementation of the AES cryptographic algorithm on an FPGA.

2015-05-06
Kitsos, Paris, Voyiatzis, Artemios G..  2014.  Towards a hardware Trojan detection methodology. Embedded Computing (MECO), 2014 3rd Mediterranean Conference on. :18-23.

Malicious hardware is a realistic threat. It can be possible to insert the malicious functionality on a device as deep as in the hardware design flow, long before manufacturing the silicon product. Towards developing a hardware Trojan horse detection methodology, we analyze capabilities and limitations of existing techniques, framing a testing strategy for uncovering efficiently hardware Trojan horses in mass-produced integrated circuits.