Biblio

Filters: Author is Bai, He  [Clear All Filters]
2022-07-01
Que, Jianming, Li, Hui, Bai, He, Lin, Lihong, Liew, Soung-Yue, Wuttisittikulkij, Lunchakorn.  2021.  A Network Architecture Containing Both Push and Pull Semantics. 2021 7th International Conference on Computer and Communications (ICCC). :2211—2216.
Recently, network usage has evolved from resource sharing between hosts to content distribution and retrieval. Some emerging network architectures, like Named Data Networking (NDN), focus on the design of content-oriented network paradigm. However, these clean-slate network architectures are difficult to be deployed progressively and deal with the new communication requirements. Multi-Identifier Network (MIN) is a promising network architecture that contains push and pull communication semantics and supports the resolution, routing and extension of multiple network identifiers. MIN's original design was proposed in 2019, which has been improved over the past two years. In this paper, we present the current design and implementation of MIN. We also propose a fallback-based identifier extension scheme to improve the extensibility of the network. We demonstrate that MIN outperforms NDN in the scenario of progressive deployment via IP tunnel.
2020-03-12
Bai, He, Wu, Cangshuai, Yang, Yuexiang, Xia, Geming, Jiang, Yue.  2019.  A Blockchain-Based Traffic Conditions and Driving Behaviors Warning Scheme in the Internet of Vehicles. 2019 IEEE 19th International Conference on Communication Technology (ICCT). :1160–1164.

With the economic development, the number of cars is increasing, and the traffic accidents and congestion problems that follow will not be underestimated. The concept of the Internet of Vehicles is becoming popular, and demand for intelligent traffic is growing. In this paper, the warning scheme we proposed aims to solve the traffic problems. Using intelligent terminals, it is faster and more convenient to obtain driving behaviors and road condition information. The application of blockchain technology can spread information to other vehicles for sharing without third-party certification. Group signature-based authentication protocol guarantees privacy and security while ensuring identity traceability. In experiments and simulations, the recognition accuracy of driving behavior can reach up to 94.90%. The use of blockchain provides secure, distributed, and autonomous features for the solution. Compared with the traditional signature method, the group signature-based authentication time varies less with the increase of the number of vehicles, and the communication time is more stable.