Biblio

Filters: Author is Lai, Chengzhe  [Clear All Filters]
2023-04-14
Lai, Chengzhe, Wang, Yinzhen.  2022.  Achieving Efficient and Secure Query in Blockchain-based Traceability Systems. 2022 19th Annual International Conference on Privacy, Security & Trust (PST). :1–5.
With the rapid development of blockchain technology, it provides a new technical solution for secure storage of data and trusted computing. However, in the actual application of data traceability, blockchain technology has an obvious disadvantage: the large amount of data stored in the blockchain system will lead to a long response time for users to query data. Higher query delay severely restricts the development of block chain technology in the traceability system. In order to solve this problem, we propose an efficient, secure and low storage overhead blockchain query scheme. Specifically, we design an index structure independent of Merkle tree to support efficient intra-block query, and create new fields in the block header to optimize inter-block query. Compared with several existing schemes, our scheme ensures the security of data. Finally, we simulate and evaluate our proposed scheme. The results show that the proposed scheme has better execution efficiency while reducing additional overhead.
2023-05-12
Lai, Chengzhe, Wang, Menghua, Zheng, Dong.  2022.  SPDT: Secure and Privacy-Preserving Scheme for Digital Twin-based Traffic Control. 2022 IEEE/CIC International Conference on Communications in China (ICCC). :144–149.
With the increasing complexity of the driving environment, more and more attention has been paid to the research on improving the intelligentization of traffic control. Among them, the digital twin-based internet of vehicle can establish a mirror system on the cloud to improve the efficiency of communication between vehicles, provide warning and safety instructions for drivers, avoid driving potential dangers. To ensure the security and effectiveness of data sharing in traffic control, this paper proposes a secure and privacy-preserving scheme for digital twin-based traffic control. Specifically, in the data uploading phase, we employ a group signature with a time-bound keys technique to realize data source authentication with efficient members revocation and privacy protection, which can ensure that data can be securely stored on cloud service providers after it synchronizes to its twin. In the data sharing stage, we employ the secure and efficient attribute-based access control technique to provide flexible and efficient data sharing, in which the parameters of a specific sub-policy can be stored during the first decryption and reused in subsequent data access containing the same sub-policy, thus reducing the computing complexity. Finally, we analyze the security and efficiency of the scheme theoretically.
ISSN: 2377-8644
2020-03-27
Lai, Chengzhe, Ding, Yuhan.  2019.  A Secure Blockchain-Based Group Mobility Management Scheme in VANETs. 2019 IEEE/CIC International Conference on Communications in China (ICCC). :340–345.

Vehicular Ad-hoc Network (VANET) can provide vehicle to vehicle (V2V) and vehicle to infrastructure (V2I) communications for efficient and safe transportation. The vehicles features high mobility, thus undergoing frequent handovers when they are moving, which introduces the significant overload on the network entities. To address the problem, the distributed mobility management (DMM) protocol for next generation mobile network has been proposed, which can be well combined with VANETs. Although the existing DMM solutions can guarantee the smooth handovers of vehicles, the security has not been fully considered in the mobility management. Moreover, the most of existing schemes cannot support group communication scenario. In this paper, we propose an efficient and secure group mobility management scheme based on the blockchain. Specifically, to reduce the handover latency and signaling cost during authentication, aggregate message authentication code (AMAC) and one-time password (OTP) are adopted. The security analysis and the performance evaluation results show that the proposed scheme can not only enhance the security functionalities but also support fast handover authentication.

2020-06-19
Lai, Chengzhe, Du, Yangyang, Men, Jiawei, Zheng, Dong.  2019.  A Trust-based Real-time Map Updating Scheme. 2019 IEEE/CIC International Conference on Communications in China (ICCC). :334—339.

The real-time map updating enables vehicles to obtain accurate and timely traffic information. Especially for driverless cars, real-time map updating can provide high-precision map service to assist the navigation, which requires vehicles to actively upload the latest road conditions. However, due to the untrusted network environment, it is difficult for the real-time map updating server to evaluate the authenticity of the road information from the vehicles. In order to prevent malicious vehicles from deliberately spreading false information and protect the privacy of vehicles from tracking attacks, this paper proposes a trust-based real-time map updating scheme. In this scheme, the public key is used as the identifier of the vehicle for anonymous communication with conditional anonymity. In addition, the blockchain is applied to provide the existence proof for the public key certificate of the vehicle. At the same time, to avoid the spread of false messages, a trust evaluation algorithm is designed. The fog node can validate the received massages from vehicles using Bayesian Inference Model. Based on the verification results, the road condition information is sent to the real-time map updating server so that the server can update the map in time and prevent the secondary traffic accident. In order to calculate the trust value offset for the vehicle, the fog node generates a rating for each message source vehicle, and finally adds the relevant data to the blockchain. According to the result of security analysis, this scheme can guarantee the anonymity and prevent the Sybil attack. Simulation results show that the proposed scheme is effective and accurate in terms of real-time map updating and trust values calculating.