Biblio

Filters: Author is Sokolsky, O.  [Clear All Filters]
2019-02-14
Kong, F., Xu, M., Weimer, J., Sokolsky, O., Lee, I..  2018.  Cyber-Physical System Checkpointing and Recovery. 2018 ACM/IEEE 9th International Conference on Cyber-Physical Systems (ICCPS). :22-31.

Transitioning to more open architectures has been making Cyber-Physical Systems (CPS) vulnerable to malicious attacks that are beyond the conventional cyber attacks. This paper studies attack-resilience enhancement for a system under emerging attacks in the environment of the controller. An effective way to address this problem is to make system state estimation accurate enough for control regardless of the compromised components. This work follows this way and develops a procedure named CPS checkpointing and recovery, which leverages historical data to recover failed system states. Specially, we first propose a new concept of physical-state recovery. The essential operation is defined as rolling the system forward starting from a consistent historical system state. Second, we design a checkpointing protocol that defines how to record system states for the recovery. The protocol introduces a sliding window that accommodates attack-detection delay to improve the correctness of stored states. Third, we present a use case of CPS checkpointing and recovery that deals with compromised sensor measurements. At last, we evaluate our design through conducting simulator-based experiments and illustrating the use of our design with an unmanned vehicle case study.

2018-05-23
Pajic, M., Mangharam, R., Sokolsky, O., others.  2014.  Model-Driven Safety Analysis of Closed-Loop Medical Systems. IEEE Transactions on Industrial Informatics. 10:3–16.
2015-05-06
Pajic, M., Weimer, J., Bezzo, N., Tabuada, P., Sokolsky, O., Insup Lee, Pappas, G.J..  2014.  Robustness of attack-resilient state estimators. Cyber-Physical Systems (ICCPS), 2014 ACM/IEEE International Conference on. :163-174.

The interaction between information technology and phys ical world makes Cyber-Physical Systems (CPS) vulnerable to malicious attacks beyond the standard cyber attacks. This has motivated the need for attack-resilient state estimation. Yet, the existing state-estimators are based on the non-realistic assumption that the exact system model is known. Consequently, in this work we present a method for state estimation in presence of attacks, for systems with noise and modeling errors. When the the estimated states are used by a state-based feedback controller, we show that the attacker cannot destabilize the system by exploiting the difference between the model used for the state estimation and the real physical dynamics of the system. Furthermore, we describe how implementation issues such as jitter, latency and synchronization errors can be mapped into parameters of the state estimation procedure that describe modeling errors, and provide a bound on the state-estimation error caused by modeling errors. This enables mapping control performance requirements into real-time (i.e., timing related) specifications imposed on the underlying platform. Finally, we illustrate and experimentally evaluate this approach on an unmanned ground vehicle case-study.
 

2018-05-23