Biblio

Filters: Author is Huang, Hejiao  [Clear All Filters]
2022-01-25
Wang, Mingyue, Miao, Yinbin, Guo, Yu, Wang, Cong, Huang, Hejiao, Jia, Xiaohua.  2021.  Attribute-based Encrypted Search for Multi-owner and Multi-user Model. ICC 2021 - IEEE International Conference on Communications. :1–7.
Nowadays, many data owners choose to outsource their data to public cloud servers while allowing authorized users to retrieve them. To protect data confidentiality from an untrusted cloud, many studies on searchable encryption (SE) are proposed for privacy-preserving search over encrypted data. However, most of the existing SE schemes only focus on the single-owner model. Users need to search one-by-one among data owners to retrieve relevant results even if data are from the same cloud server, which inevitably incurs unnecessary bandwidth and computation cost to users. Thus, how to enable efficient authorized search over multi-owner datasets remains to be fully explored. In this paper, we propose a new privacy-preserving search scheme for the multi-owner and multi-user model. Our proposed scheme has two main advantages: 1) We achieve an attribute-based keyword search for multi-owner model, where users can only search datasets from specific authorized owners. 2) Each data owner can enforce its own fine-grained access policy for users while an authorized user only needs to generate one trapdoor (i.e., encrypted search keyword) to search over multi-owner encrypted data. Through rigorous security analysis and performance evaluation, we demonstrate that our scheme is secure and feasible.
2020-06-08
Fang, Bo, Hua, Zhongyun, Huang, Hejiao.  2019.  Locality-Sensitive Hashing Scheme Based on Heap Sort of Hash Bucket. 2019 14th International Conference on Computer Science Education (ICCSE). :5–10.
Nearest neighbor search (NNS) is one of the current popular research directions, which widely used in machine learning, pattern recognition, image detection and so on. In the low dimension data, based on tree search method can get good results. But when the data dimension goes up, that will produce a curse of dimensional. The proposed Locality-Sensitive Hashing algorithm (LSH) greatly improves the efficiency of nearest neighbor query for high dimensional data. But the algorithm relies on the building a large number of hash table, which makes the space complexity very high. C2LSH based on dynamic collision improves the disadvantage of LSH, but its disadvantage is that it needs to detect the collision times of a large number of data points which Increased query time. Therefore, Based on LSH algorithm, later researchers put forward many improved algorithms, but still not ideal.In this paper, we put forward Locality-Sensitive Hashing Scheme Based on Heap Sort of Hash Bucket (HSLSH) algorithm aiming at the shortcomings of LSH and C2LSH. Its main idea is to take advantage of the efficiency of heapsort in massive data sorting to improve the efficiency of nearest neighbor query. It only needs to rely on a small number of hash functions can not only overcome the shortcoming of LSH need to build a large number of hash table, and avoids defects of C2LSH. Experiments show that our algorithm is more than 20% better than C2LSH in query accuracy and 40% percent lower in query time.