Biblio

Filters: Author is Miao, Yinbin  [Clear All Filters]
2022-01-25
Wang, Mingyue, Miao, Yinbin, Guo, Yu, Wang, Cong, Huang, Hejiao, Jia, Xiaohua.  2021.  Attribute-based Encrypted Search for Multi-owner and Multi-user Model. ICC 2021 - IEEE International Conference on Communications. :1–7.
Nowadays, many data owners choose to outsource their data to public cloud servers while allowing authorized users to retrieve them. To protect data confidentiality from an untrusted cloud, many studies on searchable encryption (SE) are proposed for privacy-preserving search over encrypted data. However, most of the existing SE schemes only focus on the single-owner model. Users need to search one-by-one among data owners to retrieve relevant results even if data are from the same cloud server, which inevitably incurs unnecessary bandwidth and computation cost to users. Thus, how to enable efficient authorized search over multi-owner datasets remains to be fully explored. In this paper, we propose a new privacy-preserving search scheme for the multi-owner and multi-user model. Our proposed scheme has two main advantages: 1) We achieve an attribute-based keyword search for multi-owner model, where users can only search datasets from specific authorized owners. 2) Each data owner can enforce its own fine-grained access policy for users while an authorized user only needs to generate one trapdoor (i.e., encrypted search keyword) to search over multi-owner encrypted data. Through rigorous security analysis and performance evaluation, we demonstrate that our scheme is secure and feasible.
2022-05-09
Ma, Zhuoran, Ma, Jianfeng, Miao, Yinbin, Liu, Ximeng, Choo, Kim-Kwang Raymond, Yang, Ruikang, Wang, Xiangyu.  2021.  Lightweight Privacy-preserving Medical Diagnosis in Edge Computing. 2021 IEEE World Congress on Services (SERVICES). :9–9.
In the era of machine learning, mobile users are able to submit their symptoms to doctors at any time, anywhere for personal diagnosis. It is prevalent to exploit edge computing for real-time diagnosis services in order to reduce transmission latency. Although data-driven machine learning is powerful, it inevitably compromises privacy by relying on vast amounts of medical data to build a diagnostic model. Therefore, it is necessary to protect data privacy without accessing local data. However, the blossom has also been accompanied by various problems, i.e., the limitation of training data, vulnerabilities, and privacy concern. As a solution to these above challenges, in this paper, we design a lightweight privacy-preserving medical diagnosis mechanism on edge. Our method redesigns the extreme gradient boosting (XGBoost) model based on the edge-cloud model, which adopts encrypted model parameters instead of local data to reduce amounts of ciphertext computation to plaintext computation, thus realizing lightweight privacy preservation on resource-limited edges. Additionally, the proposed scheme is able to provide a secure diagnosis on edge while maintaining privacy to ensure an accurate and timely diagnosis. The proposed system with secure computation could securely construct the XGBoost model with lightweight overhead, and efficiently provide a medical diagnosis without privacy leakage. Our security analysis and experimental evaluation indicate the security, effectiveness, and efficiency of the proposed system.
2022-02-10
Wang, Xiangyu, Ma, Jianfeng, Liu, Ximeng, Deng, Robert H., Miao, Yinbin, Zhu, Dan, Ma, Zhuoran.  2020.  Search Me in the Dark: Privacy-preserving Boolean Range Query over Encrypted Spatial Data. IEEE INFOCOM 2020 - IEEE Conference on Computer Communications. :2253–2262.
With the increasing popularity of geo-positioning technologies and mobile Internet, spatial keyword data services have attracted growing interest from both the industrial and academic communities in recent years. Meanwhile, a massive amount of data is increasingly being outsourced to cloud in the encrypted form for enjoying the advantages of cloud computing while without compromising data privacy. Most existing works primarily focus on the privacy-preserving schemes for either spatial or keyword queries, and they cannot be directly applied to solve the spatial keyword query problem over encrypted data. In this paper, we study the challenging problem of Privacy-preserving Boolean Range Query (PBRQ) over encrypted spatial databases. In particular, we propose two novel PBRQ schemes. Firstly, we present a scheme with linear search complexity based on the space-filling curve code and Symmetric-key Hidden Vector Encryption (SHVE). Then, we use tree structures to achieve faster-than-linear search complexity. Thorough security analysis shows that data security and query privacy can be guaranteed during the query process. Experimental results using real-world datasets show that the proposed schemes are efficient and feasible for practical applications, which is at least ×70 faster than existing techniques in the literature.
ISSN: 2641-9874