Biblio
Filters: Author is Ateş, Çağatay [Clear All Filters]
Network Anomaly Detection with Payload-based Analysis. 2022 30th Signal Processing and Communications Applications Conference (SIU). :1–4.
.
2022. Network attacks become more complicated with the improvement of technology. Traditional statistical methods may be insufficient in detecting constantly evolving network attack. For this reason, the usage of payload-based deep packet inspection methods is very significant in detecting attack flows before they damage the system. In the proposed method, features are extracted from the byte distributions in the payload and these features are provided to characterize the flows more deeply by using N-Gram analysis methods. The proposed procedure has been tested on IDS 2012 and 2017 datasets, which are widely used in the literature.
ISSN: 2165-0608
DDoS Attack Detection Using Greedy Algorithm and Frequency Modulation. 2019 27th Signal Processing and Communications Applications Conference (SIU). :1–4.
.
2019. Distributed Denial of Service (DDoS) attack is one of the major threats to the network services. In this paper, we propose a DDoS attack detection algorithm based on the probability distributions of source IP addresses and destination IP addresses. According to the behavior of source and destination IP addresses during DDoS attack, the distance between these features is calculated and used.It is calculated with using the Greedy algorithm which eliminates some requirements associated with Kullback-Leibler divergence such as having the same rank of the probability distributions. Then frequency modulation is proposed in the detection phase to reduce false alarm rates and to avoid using static threshold. This algorithm is tested on the real data collected from Boğaziçi University network.