Biblio

Filters: Author is Koca, Mutlu  [Clear All Filters]
2023-06-23
Özdel, Süleyman, Damla Ateş, Pelin, Ateş, Çağatay, Koca, Mutlu, Anarım, Emin.  2022.  Network Anomaly Detection with Payload-based Analysis. 2022 30th Signal Processing and Communications Applications Conference (SIU). :1–4.
Network attacks become more complicated with the improvement of technology. Traditional statistical methods may be insufficient in detecting constantly evolving network attack. For this reason, the usage of payload-based deep packet inspection methods is very significant in detecting attack flows before they damage the system. In the proposed method, features are extracted from the byte distributions in the payload and these features are provided to characterize the flows more deeply by using N-Gram analysis methods. The proposed procedure has been tested on IDS 2012 and 2017 datasets, which are widely used in the literature.
ISSN: 2165-0608
2022-05-10
Su, Nuğman, Panayirci, Erdal, Koca, Mutlu, Haas, Harald.  2021.  Transmit Precoding for Physical Layer Security of MIMO-NOMA-Based Visible Light Communications. 2021 17th International Symposium on Wireless Communication Systems (ISWCS). :1–6.
We consider the physical layer security (PLS) of non-orthogonal multiple access (NOMA) enabled multiple-input multiple-output (MIMO) visible light communication systems in the presence of a passive eavesdropper (Eve). In order to disrupt the decoding process at Eve, we propose a novel precoding scheme reinforced with random constellation coding. Multiple legitimate users (Bobs) will be served simultaneously using NOMA. For the proposed precoder design, we exploit the slow-fading characteristics of the visible light channel so that the transmitted symbols are successfully decoded at Bob, while Eve suffers from very high bit error ratios (BERs) due to precoding-induced jamming. Via computer simulations, we show that Bob can successfully decode their own information in various user configurations and receiver diversities. It is also shown that the BER at Eve's side is increased to the 0.5-level for similar and the asymmetrical positioning of Bob with respect to the transmitter, thus PLS is ensured by the proposed preceding technique.