Biblio

Filters: Author is Liao, X.  [Clear All Filters]
2019-02-22
Liao, X., Yu, Y., Li, B., Li, Z., Qin, Z..  2019.  A New Payload Partition Strategy in Color Image Steganography. IEEE Transactions on Circuits and Systems for Video Technology. :1-1.

In traditional steganographic schemes, RGB three channels payloads are assigned equally in a true color image. In fact, the security of color image steganography relates not only to data-embedding algorithms but also to different payload partition. How to exploit inter-channel correlations to allocate payload for performance enhancement is still an open issue in color image steganography. In this paper, a novel channel-dependent payload partition strategy based on amplifying channel modification probabilities is proposed, so as to adaptively assign the embedding capacity among RGB channels. The modification probabilities of three corresponding pixels in RGB channels are simultaneously increased, and thus the embedding impacts could be clustered, in order to improve the empirical steganographic security against the channel co-occurrences detection. Experimental results show that the new color image steganographic schemes incorporated with the proposed strategy can effectively make the embedding changes concentrated mainly in textured regions, and achieve better performance on resisting the modern color image steganalysis.

2018-03-19
Salem, A., Liao, X., Shen, Y., Lu, X..  2017.  Provoking the Adversary by Dual Detection Techniques: A Game Theoretical Framework. 2017 International Conference on Networking and Network Applications (NaNA). :326–329.

Establishing a secret and reliable wireless communication is a challenging task that is of paramount importance. In this paper, we investigate the physical layer security of a legitimate transmission link between a user that assists an Intrusion Detection System (IDS) in detecting eavesdropping and jamming attacks in the presence of an adversary that is capable of conducting an eavesdropping or a jamming attack. The user is being faced by a challenge of whether to transmit, thus becoming vulnerable to an eavesdropping or a jamming attack, or to keep silent and consequently his/her transmission will be delayed. The adversary is also facing a challenge of whether to conduct an eavesdropping or a jamming attack that will not get him/her to be detected. We model the interactions between the user and the adversary as a two-state stochastic game. Explicit solutions characterize some properties while highlighting some interesting strategies that are being embraced by the user and the adversary. Results show that our proposed system outperform current systems in terms of communication secrecy.

2015-05-06
Lei, X., Liao, X., Huang, T., Li, H..  2014.  Cloud Computing Service: the Case of Large Matrix Determinant Computation. Services Computing, IEEE Transactions on. PP:1-1.

Cloud computing paradigm provides an alternative and economical service for resource-constrained clients to perform large-scale data computation. Since large matrix determinant computation (DC) is ubiquitous in the fields of science and engineering, a first step is taken in this paper to design a protocol that enables clients to securely, verifiably, and efficiently outsource DC to a malicious cloud. The main idea to protect the privacy is employing some transformations on the original matrix to get an encrypted matrix which is sent to the cloud; and then transforming the result returned from the cloud to get the correct determinant of the original matrix. Afterwards, a randomized Monte Carlo verification algorithm with one-sided error is introduced, whose superiority in designing inexpensive result verification algorithm for secure outsourcing is well demonstrated. In addition, it is analytically shown that the proposed protocol simultaneously fulfills the goals of correctness, security, robust cheating resistance, and high-efficiency. Extensive theoretical analysis and experimental evaluation also show its high-efficiency and immediate practicability. It is hoped that the proposed protocol can shed light in designing other novel secure outsourcing protocols, and inspire powerful companies and working groups to finish the programming of the demanded all-inclusive scientific computations outsourcing software system. It is believed that such software system can be profitable by means of providing large-scale scientific computation services for so many potential clients.