Biblio

Filters: Author is Jason Croft, University of Illinois at Urbana-Champaign  [Clear All Filters]
2016-04-12
Anduo Wang, University of Illinois at Urbana-Champaign, Xueyan Mei, University of Illinois at Urbana-Champaign, Jason Croft, University of Illinois at Urbana-Champaign, Matthew Caesar, University of Illinois at Urbana-Champaign, Brighten Godfrey, University of Illinois at Urbana-Champaign.  2016.  Ravel: A Database-Defined Network. ACM SIGCOMM Symposium on Software Defined Networking Research (SOSR 2016).

SDN’s logically centralized control provides an insertion point for programming the network. While it is generally agreed that higherlevel abstractions are needed to make that programming easy, there is little consensus on what are the “right” abstractions. Indeed, as SDN moves beyond its initial specialized deployments to broader use cases, it is likely that network control applications will require diverse abstractions that evolve over time. To this end, we champion a perspective that SDN control fundamentally revolves around data representation. We discard any application-specific structure that might be outgrown by new demands. Instead, we adopt a plain data representation of the entire network — network topology, forwarding, and control applications — and seek a universal data language that allows application programmers to transform the primitive representation into any high-level representations presented to applications or network operators. Driven by this insight, we present a system, Ravel, that implements an entire SDN network control infrastructure within a standard SQL database. In Ravel, network abstractions take the form of user-defined SQL views expressed by SQL queries that can be added on the fly. A key challenge in realizing this approach is to orchestrate multiple simultaneous abstractions that collectively affect the same underlying data. To achieve this, Ravel enhances the database with novel data integration mechanisms that merge the multiple views into a coherent forwarding behavior. Moreover, Ravel is exposed to applications through the one simple, familiar and highly interoperable SQL interface. While this is an ambitious long-term goal, our prototype built on the PostgreSQL database exhibits promising performance even for large scale networks.

2015-11-11
Wenxuan Zhou, University of Illinois at Urbana-Champaign, Dong Jin, Illinois Institute of Technology, Jason Croft, University of Illinois at Urbana-Champaign, Matthew Caesar, University of Illinois at Urbana-Champaign, P. Brighten Godfrey, University of Illinois at Urbana-Champaign.  2015.  Enforcing Customizable Consistency Properties in Software-Defined Networks. 12th USENIX Symposium on Networked Systems Design and Implementation (NSDI 2015).

It is critical to ensure that network policy remains consistent during state transitions. However, existing techniques impose a high cost in update delay, and/or FIB space. We propose the Customizable Consistency Generator (CCG), a fast and generic framework to support customizable consistency policies during network updates. CCG effectively reduces the task of synthesizing an update plan under the constraint of a given consistency policy to a verification problem, by checking whether an update can safely be installed in the network at a particular time, and greedily processing network state transitions to heuristically minimize transition delay. We show a large class of consistency policies are guaranteed by this greedy heuristic alone; in addition, CCG makes judicious use of existing heavier-weight network update mechanisms to provide guarantees when necessary. As such, CCG nearly achieves the “best of both worlds”: the efficiency of simply passing through updates in most cases, with the consistency guarantees of more heavyweight techniques. Mininet and physical testbed evaluations demonstrate CCG’s capability to achieve various types of consistency, such as path and bandwidth properties, with zero switch memory overhead and up to a 3× delay reduction compared to previous solutions.

2016-11-11
Brighten Godfrey, University of Illions at Urbana-Champagin, Anduo Wang, Temple University, Dong Jin, Illinois Institute of Technology, Jason Croft, University of Illinois at Urbana-Champaign, Matthew Caesar, University of Illinois at Urbana-Champaign.  2015.  A Hypothesis Testing Framework for Network Security.

We rely on network infrastructure to deliver critical services and ensure security. Yet networks today have reached a level of complexity that is far beyond our ability to have confidence in their correct behavior – resulting in significant time investment and security vulnerabilities that can cost millions of dollars, or worse. Motivated by this need for rigorous understanding of complex networks, I will give an overview of our or Science of Security lablet project, A Hypothesis Testing Framework for Network Security.

First, I will discuss the emerging field of network verification, which transforms network security by rigorously checking that intended behavior is correctly realized across the live running network. Our research developed a technique called data plane verification, which has discovered problems in operational environments and can verify hypotheses and security policies with millisecond-level latency in dynamic networks. In just a few years, data plane verification has moved from early research prototypes to production deployment. We have built on this technique to reason about hypotheses even under the temporal uncertainty inherent in a large distributed network. Second, I will discuss a new approach to reasoning about networks as databases that we can query to determine answers to behavioral questions and to actively control the network. This talk will span work by a large group of folks, including Anduo Wang, Wenxu an Zhou, Dong Jin, Jason Croft, Matthew Caesar, Ahmed Khurshid, and Xuan Zou.

Presented at the Illinois ITI Joint Trust and Security/Science of Security Seminar, September 15, 2015.

2017-02-15
Wenxuan Zhou, University of Illinois at Urbana-Champaign, Dong Jin, Illinois Institute of Technology, Jason Croft, University of Illinois at Urbana-Champaign, Matthew Caesar, University of Illinois at Urbana-Champaign, P. Brighten Godfrey, University of Illinois at Urbana-Champaign.  2015.  Enforcing Generalized Consistency Properties in Software-Defined Networks. 12th USENIX Symposium on Networked Systems Design and Implementation (NSDI 2015).

It is critical to ensure that network policy remains consistent during state transitions. However, existing techniques impose a high cost in update delay, and/or FIB space. We propose the Customizable Consistency Generator (CCG), a fast and generic framework to support customizable consistency policies during network updates. CCG effectively reduces the task of synthesizing an update plan under the constraint of a given consistency policy to a verification problem, by checking whether an update can safely be installed in the network at a particular time, and greedily processing network state transitions to heuristically minimize transition delay. We show a large class of consistency policies are guaranteed by this greedy jeuristic alone; in addition, CCG makes judicious use of existing heavier-weight network update mechanisms to provide guarantees when necessary. As such, CCG nearly achieves the “best of both worlds”: the efficiency of simply passing through updates in most cases, with the consistency guarantees of more heavyweight techniques. Mininet and physical testbed evaluations demonstrate CCG’s capability to achieve various types of consistency, such as path and bandwidth properties, with zero switch memory overhead and up to a 3× delay reduction compared to previous solutions.