Biblio

Filters: Author is P. Brighten Godfrey, University of Illinois at Urbana-Champaign  [Clear All Filters]
2017-07-18
Soudeh Ghorbani, University of Illinois at Urbana-Champaign, P. Brighten Godfrey, University of Illinois at Urbana-Champaign.  2017.  COCONUT: Seamless Scale Out of Network Elements. Twelfth European Conference on Computer Systems (EuroSys 2017).

A key use of software-defined networking is to enable scaleout of network data plane elements. Naively scaling networking elements, however, can cause incorrect behavior. For example, we show that an IDS system which operates correctly as a single network element can erroneously and permanently block hosts when it is replicated.

In this paper, we provide a system, COCONUT, for seamless scale-out of network forwarding elements; that is, an SDN application programmer can program to what functionally appears to be a single forwarding element, but whichmay be replicated behind the scenes. To do this, we identifythe key property for seamless scale out, weak causality,and guarantee it through a practical and scalable implementation of vector clocks in the data plane. We prove that COCONUT enables seamless scale out of networking elements, i.e., the user-perceived behavior of any COCONUT element implemented with a distributed set of concurrent replicas is provably indistinguishable from its singleton implementation. Finally, we build a prototype of COCONUT and experimentally demonstrate its correct behavior. We also show that its abstraction enables a more efficient implementation of seamless scale-out compared to a naive baseline.

2017-04-21
Santhosh Prabhu, University of Illinois at Urbana-Champaign, Mo Dong, University of Illinois at Urbana-Champaign, Tong Meng, University of Illinois at Urbana-Champaign, P. Brighten Godfrey, University of Illinois at Urbana-Champaign, Matthew Caesar, University of Illinois at Urbana-Champaign.  2017.  Let Me Rephrase That: Transparent Optimization in SDNs. ACM Symposium on SDN Research (SOSR 2017).

Enterprise networks today have highly diverse correctness requirements and relatively common performance objectives. As a result, preferred abstractions for enterprise networks are those which allow matching correctness specification, while transparently managing performance. Existing SDN network management architectures, however, bundle correctness and performance as a single abstraction. We argue that this creates an SDN ecosystem that is unnecessarily hard to build, maintain and evolve. We advocate a separation of the diverse correctness abstractions from generic performance optimization, to enable easier evolution of SDN controllers and platforms. We propose Oreo, a first step towards a common and relatively transparent performance optimization layer for SDN. Oreo performs the optimization by first building a model that describes every flow in the network, and then performing network-wide, multi-objective optimization based on this model without disrupting higher level correctness.

2015-11-11
Wenxuan Zhou, University of Illinois at Urbana-Champaign, Dong Jin, Illinois Institute of Technology, Jason Croft, University of Illinois at Urbana-Champaign, Matthew Caesar, University of Illinois at Urbana-Champaign, P. Brighten Godfrey, University of Illinois at Urbana-Champaign.  2015.  Enforcing Customizable Consistency Properties in Software-Defined Networks. 12th USENIX Symposium on Networked Systems Design and Implementation (NSDI 2015).

It is critical to ensure that network policy remains consistent during state transitions. However, existing techniques impose a high cost in update delay, and/or FIB space. We propose the Customizable Consistency Generator (CCG), a fast and generic framework to support customizable consistency policies during network updates. CCG effectively reduces the task of synthesizing an update plan under the constraint of a given consistency policy to a verification problem, by checking whether an update can safely be installed in the network at a particular time, and greedily processing network state transitions to heuristically minimize transition delay. We show a large class of consistency policies are guaranteed by this greedy heuristic alone; in addition, CCG makes judicious use of existing heavier-weight network update mechanisms to provide guarantees when necessary. As such, CCG nearly achieves the “best of both worlds”: the efficiency of simply passing through updates in most cases, with the consistency guarantees of more heavyweight techniques. Mininet and physical testbed evaluations demonstrate CCG’s capability to achieve various types of consistency, such as path and bandwidth properties, with zero switch memory overhead and up to a 3× delay reduction compared to previous solutions.

2017-02-15
Wenxuan Zhou, University of Illinois at Urbana-Champaign, Dong Jin, Illinois Institute of Technology, Jason Croft, University of Illinois at Urbana-Champaign, Matthew Caesar, University of Illinois at Urbana-Champaign, P. Brighten Godfrey, University of Illinois at Urbana-Champaign.  2015.  Enforcing Generalized Consistency Properties in Software-Defined Networks. 12th USENIX Symposium on Networked Systems Design and Implementation (NSDI 2015).

It is critical to ensure that network policy remains consistent during state transitions. However, existing techniques impose a high cost in update delay, and/or FIB space. We propose the Customizable Consistency Generator (CCG), a fast and generic framework to support customizable consistency policies during network updates. CCG effectively reduces the task of synthesizing an update plan under the constraint of a given consistency policy to a verification problem, by checking whether an update can safely be installed in the network at a particular time, and greedily processing network state transitions to heuristically minimize transition delay. We show a large class of consistency policies are guaranteed by this greedy jeuristic alone; in addition, CCG makes judicious use of existing heavier-weight network update mechanisms to provide guarantees when necessary. As such, CCG nearly achieves the “best of both worlds”: the efficiency of simply passing through updates in most cases, with the consistency guarantees of more heavyweight techniques. Mininet and physical testbed evaluations demonstrate CCG’s capability to achieve various types of consistency, such as path and bandwidth properties, with zero switch memory overhead and up to a 3× delay reduction compared to previous solutions.

2017-02-09
Ahmed Khurshid, University of Illinois at Urbana-Champaign, Wenxuan Zhou, University of Illinois at Urbana-Champaign, Matthew Caesar, University of Illinois at Urbana-Champaign, P. Brighten Godfrey, University of Illinois at Urbana-Champaign.  2012.  VeriFlow: Verifying Network-Wide Invariants in Real Time. First Workshop on Hot Topics in Software Defined Networks (HotSDN 2012).

Networks are complex and prone to bugs. Existing tools that check configuration files and data-plane state operate offline at timescales of seconds to hours, and cannot detect or prevent bugs as they arise. Is it possible to check network-wide invariants in real time, as the network state evolves? The key challenge here is to achieve extremely low latency during the checks so that network performance is not affected. In this paper, we present a preliminary design, VeriFlow, which suggests that this goal is achievable. VeriFlow is a layer between a software-defined networking controller and network devices that checks for network-wide invariant violations dynamically as each forwarding rule is inserted. Based on an implementation using a Mininet OpenFlow network and Route Views trace data, we find that VeriFlow can perform rigorous checking within hundreds of microseconds per rule insertion.