Biblio

Filters: Author is Starke, Allen C.  [Clear All Filters]
2020-10-14
Trevizan, Rodrigo D., Ruben, Cody, Nagaraj, Keerthiraj, Ibukun, Layiwola L., Starke, Allen C., Bretas, Arturo S., McNair, Janise, Zare, Alina.  2019.  Data-driven Physics-based Solution for False Data Injection Diagnosis in Smart Grids. 2019 IEEE Power Energy Society General Meeting (PESGM). :1—5.
This paper presents a data-driven and physics-based method for detection of false data injection (FDI) in Smart Grids (SG). As the power grid transitions to the use of SG technology, it becomes more vulnerable to cyber-attacks like FDI. Current strategies for the detection of bad data in the grid rely on the physics based State Estimation (SE) process and statistical tests. This strategy is naturally vulnerable to undetected bad data as well as false positive scenarios, which means it can be exploited by an intelligent FDI attack. In order to enhance the robustness of bad data detection, the paper proposes the use of data-driven Machine Intelligence (MI) working together with current bad data detection via a combined Chi-squared test. Since MI learns over time and uses past data, it provides a different perspective on the data than the SE, which analyzes only the current data and relies on the physics based model of the system. This combined bad data detection strategy is tested on the IEEE 118 bus system.