Biblio

Filters: Author is Ye, S.  [Clear All Filters]
2021-02-03
Ye, S., Feigh, K., Howard, A..  2020.  Learning in Motion: Dynamic Interactions for Increased Trust in Human-Robot Interaction Games. 2020 29th IEEE International Conference on Robot and Human Interactive Communication (RO-MAN). :1186—1189.

Embodiment of actions and tasks has typically been analyzed from the robot's perspective where the robot's embodiment helps develop and maintain trust. However, we ask a similar question looking at the interaction from the human perspective. Embodied cognition has been shown in the cognitive science literature to produce increased social empathy and cooperation. To understand how human embodiment can help develop and increase trust in human-robot interactions, we created conducted a study where participants were tasked with memorizing greek letters associated with dance motions with the help of a humanoid robot. Participants either performed the dance motion or utilized a touch screen during the interaction. The results showed that participants' trust in the robot increased at a higher rate during human embodiment of motions as opposed to utilizing a touch screen device.

2020-12-11
Han, Y., Zhang, W., Wei, J., Liu, X., Ye, S..  2019.  The Study and Application of Security Control Plan Incorporating Frequency Stability (SCPIFS) in CPS-Featured Interconnected Asynchronous Grids. 2019 IEEE Innovative Smart Grid Technologies - Asia (ISGT Asia). :349—354.

The CPS-featured modern asynchronous grids interconnected with HVDC tie-lines facing the hazards from bulk power imbalance shock. With the aid of cyber layer, the SCPIFS incorporates the frequency stability constrains is put forwarded. When there is bulk power imbalance caused by HVDC tie-lines block incident or unplanned loads increasing, the proposed SCPIFS ensures the safety and frequency stability of both grids at two terminals of the HVDC tie-line, also keeps the grids operate economically. To keep frequency stability, the controllable variables in security control strategy include loads, generators outputs and the power transferred in HVDC tie-lines. McCormick envelope method and ADMM are introduced to solve the proposed SCPIFS optimization model. Case studies of two-area benchmark system verify the safety and economical benefits of the SCPFS. HVDC tie-line transferred power can take the advantage of low cost generator resource of both sides utmost and avoid the load shedding via tuning the power transferred through the operating tie-lines, thus the operation of both connected asynchronous grids is within the limit of frequency stability domain.