Biblio

Filters: Author is Savage, N.  [Clear All Filters]
2021-01-18
Naik, N., Jenkins, P., Savage, N., Yang, L., Boongoen, T., Iam-On, N..  2020.  Fuzzy-Import Hashing: A Malware Analysis Approach. 2020 IEEE International Conference on Fuzzy Systems (FUZZ-IEEE). :1–8.
Malware has remained a consistent threat since its emergence, growing into a plethora of types and in large numbers. In recent years, numerous new malware variants have enabled the identification of new attack surfaces and vectors, and have become a major challenge to security experts, driving the enhancement and development of new malware analysis techniques to contain the contagion. One of the preliminary steps of malware analysis is to remove the abundance of counterfeit malware samples from the large collection of suspicious samples. This process assists in the management of man and machine resources effectively in the analysis of both unknown and likely malware samples. Hashing techniques are one of the fastest and efficient techniques for performing this preliminary analysis such as fuzzy hashing and import hashing. However, both hashing methods have their limitations and they may not be effective on their own, instead the combination of two distinctive methods may assist in improving the detection accuracy and overall performance of the analysis. This paper proposes a Fuzzy-Import hashing technique which is the combination of fuzzy hashing and import hashing to improve the detection accuracy and overall performance of malware analysis. This proposed Fuzzy-Import hashing offers several benefits which are demonstrated through the experimentation performed on the collected malware samples and compared against stand-alone techniques of fuzzy hashing and import hashing.
Naik, N., Jenkins, P., Savage, N., Yang, L., Naik, K., Song, J..  2020.  Embedding Fuzzy Rules with YARA Rules for Performance Optimisation of Malware Analysis. 2020 IEEE International Conference on Fuzzy Systems (FUZZ-IEEE). :1–7.
YARA rules utilises string or pattern matching to perform malware analysis and is one of the most effective methods in use today. However, its effectiveness is dependent on the quality and quantity of YARA rules employed in the analysis. This can be managed through the rule optimisation process, although, this may not necessarily guarantee effective utilisation of YARA rules and its generated findings during its execution phase, as the main focus of YARA rules is in determining whether to trigger a rule or not, for a suspect sample after examining its rule condition. YARA rule conditions are Boolean expressions, mostly focused on the binary outcome of the malware analysis, which may limit the optimised use of YARA rules and its findings despite generating significant information during the execution phase. Therefore, this paper proposes embedding fuzzy rules with YARA rules to optimise its performance during the execution phase. Fuzzy rules can manage imprecise and incomplete data and encompass a broad range of conditions, which may not be possible in Boolean logic. This embedding may be more advantageous when the YARA rules become more complex, resulting in multiple complex conditions, which may not be processed efficiently utilising Boolean expressions alone, thus compromising effective decision-making. This proposed embedded approach is applied on a collected malware corpus and is tested against the standard and enhanced YARA rules to demonstrate its success.