Biblio

Filters: Author is Song, J.  [Clear All Filters]
2021-01-18
Naik, N., Jenkins, P., Savage, N., Yang, L., Naik, K., Song, J..  2020.  Embedding Fuzzy Rules with YARA Rules for Performance Optimisation of Malware Analysis. 2020 IEEE International Conference on Fuzzy Systems (FUZZ-IEEE). :1–7.
YARA rules utilises string or pattern matching to perform malware analysis and is one of the most effective methods in use today. However, its effectiveness is dependent on the quality and quantity of YARA rules employed in the analysis. This can be managed through the rule optimisation process, although, this may not necessarily guarantee effective utilisation of YARA rules and its generated findings during its execution phase, as the main focus of YARA rules is in determining whether to trigger a rule or not, for a suspect sample after examining its rule condition. YARA rule conditions are Boolean expressions, mostly focused on the binary outcome of the malware analysis, which may limit the optimised use of YARA rules and its findings despite generating significant information during the execution phase. Therefore, this paper proposes embedding fuzzy rules with YARA rules to optimise its performance during the execution phase. Fuzzy rules can manage imprecise and incomplete data and encompass a broad range of conditions, which may not be possible in Boolean logic. This embedding may be more advantageous when the YARA rules become more complex, resulting in multiple complex conditions, which may not be processed efficiently utilising Boolean expressions alone, thus compromising effective decision-making. This proposed embedded approach is applied on a collected malware corpus and is tested against the standard and enhanced YARA rules to demonstrate its success.
2021-04-09
Lin, T., Shi, Y., Shu, N., Cheng, D., Hong, X., Song, J., Gwee, B. H..  2020.  Deep Learning-Based Image Analysis Framework for Hardware Assurance of Digital Integrated Circuits. 2020 IEEE International Symposium on the Physical and Failure Analysis of Integrated Circuits (IPFA). :1—6.
We propose an Artificial Intelligence (AI)/Deep Learning (DL)-based image analysis framework for hardware assurance of digital integrated circuits (ICs). Our aim is to examine and verify various hardware information from analyzing the Scanning Electron Microscope (SEM) images of an IC. In our proposed framework, we apply DL-based methods at all essential steps of the analysis. To the best of our knowledge, this is the first such framework that makes heavy use of DL-based methods at all essential analysis steps. Further, to reduce time and effort required in model re-training, we propose and demonstrate various automated or semi-automated training data preparation methods and demonstrate the effectiveness of using synthetic data to train a model. By applying our proposed framework to analyzing a set of SEM images of a large digital IC, we prove its efficacy. Our DL-based methods are fast, accurate, robust against noise, and can automate tasks that were previously performed mainly manually. Overall, we show that DL-based methods can largely increase the level of automation in hardware assurance of digital ICs and improve its accuracy.
2018-06-20
Lee, Y., Choi, S. S., Choi, J., Song, J..  2017.  A Lightweight Malware Classification Method Based on Detection Results of Anti-Virus Software. 2017 12th Asia Joint Conference on Information Security (AsiaJCIS). :5–9.

With the development of cyber threats on the Internet, the number of malware, especially unknown malware, is also dramatically increasing. Since all of malware cannot be analyzed by analysts, it is very important to find out new malware that should be analyzed by them. In order to cope with this issue, the existing approaches focused on malware classification using static or dynamic analysis results of malware. However, the static and the dynamic analyses themselves are also too costly and not easy to build the isolated, secure and Internet-like analysis environments such as sandbox. In this paper, we propose a lightweight malware classification method based on detection results of anti-virus software. Since the proposed method can reduce the volume of malware that should be analyzed by analysts, it can be used as a preprocess for in-depth analysis of malware. The experimental showed that the proposed method succeeded in classification of 1,000 malware samples into 187 unique groups. This means that 81% of the original malware samples do not need to analyze by analysts.