Biblio

Filters: Author is Ken Keefe, University of Illinois at Urbana-Champaign  [Clear All Filters]
2018-07-13
Carmen Cheh, University of Illinois at Urbana-Champaign, Ken Keefe, University of Illinois at Urbana-Champaign, Brett Feddersen, University of Illinois at Urbana-Champaign, Binbin Chen, Advanced Digital Sciences Center Singapre, William G. Temple, Advance Digital Science Center Singapore, William H. Sanders, University of Illinois at Urbana-Champaign.  2017.  Developing Models for Physical Attacks in Cyber-Physical Systems Security and Privacy. ACM Workshop on Cyber-Physical Systems Security and Privacy.

In this paper, we analyze the security of cyber-physical systems using the ADversary VIew Security Evaluation (ADVISE) meta modeling approach, taking into consideration the efects of physical attacks. To build our model of the system, we construct an ontology that describes the system components and the relationships among them. The ontology also deines attack steps that represent cyber and physical actions that afect the system entities. We apply the ADVISE meta modeling approach, which admits as input our deined ontology, to a railway system use case to obtain insights regarding the system’s security. The ADVISE Meta tool takes in a system model of a railway station and generates an attack execution graph that shows the actions that adversaries may take to reach their goal. We consider several adversary proiles, ranging from outsiders to insider staf members, and compare their attack paths in terms of targeted assets, time to achieve the goal, and probability of detection. The generated results show that even adversaries with access to noncritical assets can afect system service by intelligently crafting their attacks to trigger a physical sequence of efects. We also identify the physical devices and user actions that require more in-depth monitoring to reinforce the system’s security.

2016-11-15
Mohammad Noureddine, University of Illinois at Urbana-Champaign, Masooda Bashir, University of Illinois at Urbana-Champaign, Ken Keefe, University of Illinois at Urbana-Champaign, Andrew Marturano, University of Illinois at Urbana-Champaign, William H. Sanders, University of Illinois at Urbana-Champaign.  2015.  Accounting for User Behavior in Predictive Cyber Security Models.

The human factor is often regarded as the weakest link in cybersecurity systems. The investigation of several security breaches reveals an important impact of human errors in exhibiting security vulnerabilities. Although security researchers have long observed the impact of human behavior, few improvements have been made in designing secure systems that are resilient to the uncertainties of the human element.

In this talk, we discuss several psychological theories that attempt to understand and influence the human behavior in the cyber world. Our goal is to use such theories in order to build predictive cyber security models that include the behavior of typical users, as well as system administrators. We then illustrate the importance of our approach by presenting a case study that incorporates models of human users. We analyze our preliminary results and discuss their challenges and our approaches to address them in the future.

Presented at the ITI Joint Trust and Security/Science of Security Seminar, October 20, 2016.

Ken Keefe, University of Illinois at Urbana-Champaign.  2014.  Making Sound Design Decisions Using Quantitative Security Metrics.

Presented at the Illinois SoS Bi-weekly Meeting, December 2014.