Biblio

Filters: Author is Zhu, Zheng  [Clear All Filters]
2023-07-21
Su, Xiangjing, Zhu, Zheng, Xiao, Shiqu, Fu, Yang, Wu, Yi.  2022.  Deep Neural Network Based Efficient Data Fusion Model for False Data Detection in Power System. 2022 IEEE 6th Conference on Energy Internet and Energy System Integration (EI2). :1462—1466.
Cyberattack on power system brings new challenges on the development of modern power system. Hackers may implement false data injection attack (FDIA) to cause unstable operating conditions of the power system. However, data from different power internet of things usually contains a lot of redundancy, making it difficult for current efficient discriminant model to precisely identify FDIA. To address this problem, we propose a deep learning network-based data fusion model to handle features from measurement data in power system. Proposed model includes a data enrichment module and a data fusion module. We firstly employ feature engineering technique to enrich features from power system operation in time dimension. Subsequently, a long short-term memory based autoencoder (LSTM-AE) is designed to efficiently avoid feature space explosion problem during data enriching process. Extensive experiments are performed on several classical attack detection models over the load data set from IEEE 14-bus system and simulation results demonstrate that fused data from proposed model shows higher detection accuracy with respect to the raw data.
2021-05-05
Zhu, Zheng, Tian, Yingjie, Li, Fan, Yang, Hongshan, Ma, Zheng, Rong, Guoping.  2020.  Research on Edge Intelligence-based Security Analysis Method for Power Operation System. 2020 7th IEEE International Conference on Cyber Security and Cloud Computing (CSCloud)/2020 6th IEEE International Conference on Edge Computing and Scalable Cloud (EdgeCom). :258—263.

At present, the on-site safety problems of substations and critical power equipment are mainly through inspection methods. Still, manual inspection is difficult, time-consuming, and uninterrupted inspection is not possible. The current safety management is mainly guaranteed by rules and regulations and standardized operating procedures. In the on-site environment, it is very dependent on manual execution and confirmation, and the requirements for safety supervision and operating personnel are relatively high. However, the reliability, the continuity of control and patrol cannot be fully guaranteed, and it is easy to cause security vulnerabilities and cause security accidents due to personnel slackness. In response to this shortcoming, this paper uses edge computing and image processing techniques to discover security risks in time and designs a deep convolution attention mechanism network to perform image processing. Then the network is cropped and compressed so that it can be processed at the edge, and the results are aggregated to the cloud for unified management. A comprehensive security assessment module is designed in the cloud to conduct an overall risk assessment of the results reported by all edges, and give an alarm prompt. The experimental results in the real environment show the effectiveness of this method.