Biblio
Filters: Author is Wu, Yi [Clear All Filters]
A cross-layer attack path detection method for smart grid dynamics. 2022 5th International Conference on Advanced Electronic Materials, Computers and Software Engineering (AEMCSE). :142—146.
.
2022. With the intelligent development of power system, due to the double-layer structure of smart grid and the characteristics of failure propagation across layers, the attack path also changes significantly: from single-layer to multi-layer and from static to dynamic. In response to the shortcomings of the single-layer attack path of traditional attack path identification methods, this paper proposes the idea of cross-layer attack, which integrates the threat propagation mechanism of the information layer and the failure propagation mechanism of the physical layer to establish a forward-backward bi-directional detection model. The model is mainly used to predict possible cross-layer attack paths and evaluate their path generation probabilities to provide theoretical guidance and technical support for defenders. The experimental results show that the method proposed in this paper can well identify the dynamic cross-layer attacks in the smart grid.
Deep Neural Network Based Efficient Data Fusion Model for False Data Detection in Power System. 2022 IEEE 6th Conference on Energy Internet and Energy System Integration (EI2). :1462—1466.
.
2022. Cyberattack on power system brings new challenges on the development of modern power system. Hackers may implement false data injection attack (FDIA) to cause unstable operating conditions of the power system. However, data from different power internet of things usually contains a lot of redundancy, making it difficult for current efficient discriminant model to precisely identify FDIA. To address this problem, we propose a deep learning network-based data fusion model to handle features from measurement data in power system. Proposed model includes a data enrichment module and a data fusion module. We firstly employ feature engineering technique to enrich features from power system operation in time dimension. Subsequently, a long short-term memory based autoencoder (LSTM-AE) is designed to efficiently avoid feature space explosion problem during data enriching process. Extensive experiments are performed on several classical attack detection models over the load data set from IEEE 14-bus system and simulation results demonstrate that fused data from proposed model shows higher detection accuracy with respect to the raw data.
Multi-Authority Attribute Based Encryption With Policy-hidden and Accountability. 2020 International Conference on Space-Air-Ground Computing (SAGC). :95—96.
.
2020. In this paper, an attribute-based encryption scheme with policy hidden and key tracing under multi-authority is proposed. In our scheme, the access structure is embedded into the ciphertext implicitly and the attacker cannot gain user's private information by access structure. The key traceability is realized under multi-authority and collusion is prevented. Finally, based on the DBDH security model, it is proved that this scheme can resist the plaintext attack under the standard model.
False Data Injection Attack Location Detection Based on Classification Method in Smart Grid. 2020 2nd International Conference on Artificial Intelligence and Advanced Manufacture (AIAM). :133—136.
.
2020. The state estimation technology is utilized to estimate the grid state based on the data of the meter and grid topology structure. The false data injection attack (FDIA) is an information attack method to disturb the security of the power system based on the meter measurement. Current FDIA detection researches pay attention on detecting its presence. The location information of FDIA is also important for power system security. In this paper, locating the FDIA of the meter is regarded as a multi-label classification problem. Each label represents the state of the corresponding meter. The ensemble model, the multi-label decision tree algorithm, is utilized as the classifier to detect the exact location of the FDIA. This method does not need the information of the power topology and statistical knowledge assumption. The numerical experiments based on the IEEE-14 bus system validates the performance of the proposed method.
Semi-black-box Attacks Against Speech Recognition Systems Using Adversarial Samples. 2019 IEEE International Symposium on Dynamic Spectrum Access Networks (DySPAN). :1—5.
.
2019. As automatic speech recognition (ASR) systems have been integrated into a diverse set of devices around us in recent years, security vulnerabilities of them have become an increasing concern for the public. Existing studies have demonstrated that deep neural networks (DNNs), acting as the computation core of ASR systems, is vulnerable to deliberately designed adversarial attacks. Based on the gradient descent algorithm, existing studies have successfully generated adversarial samples which can disturb ASR systems and produce adversary-expected transcript texts designed by adversaries. Most of these research simulated white-box attacks which require knowledge of all the components in the targeted ASR systems. In this work, we propose the first semi-black-box attack against the ASR system - Kaldi. Requiring only partial information from Kaldi and none from DNN, we can embed malicious commands into a single audio chip based on the gradient-independent genetic algorithm. The crafted audio clip could be recognized as the embedded malicious commands by Kaldi and unnoticeable to humans in the meanwhile. Experiments show that our attack can achieve high attack success rate with unnoticeable perturbations to three types of audio clips (pop music, pure music, and human command) without the need of the underlying DNN model parameters and architecture.