Biblio
Filters: Author is Wang, Weitian [Clear All Filters]
A POMDP-based Robot-Human Trust Model for Human-Robot Collaboration. 2022 12th International Conference on CYBER Technology in Automation, Control, and Intelligent Systems (CYBER). :1009–1014.
.
2022. Trust is a cognitive ability that can be dependent on behavioral consistency. In this paper, a partially observable Markov Decision Process (POMDP)-based computational robot-human trust model is proposed for hand-over tasks in human-robot collaborative contexts. The robot's trust in its human partner is evaluated based on the human behavior estimates and object detection during the hand-over task. The human-robot hand-over process is parameterized as a partially observable Markov Decision Process. The proposed approach is verified in real-world human-robot collaborative tasks. Results show that our approach can be successfully applied to human-robot hand-over tasks to achieve high efficiency, reduce redundant robot movements, and realize predictability and mutual understanding of the task.
ISSN: 2642-6633
Trust or Not?: A Computational Robot-Trusting-Human Model for Human-Robot Collaborative Tasks 2020 IEEE International Conference on Big Data (Big Data). :5689–5691.
.
2020. The trust of a robot in its human partner is a significant issue in human-robot interaction, which is seldom explored in the field of robotics. This study addresses a critical issue of robots' trust in humans during the human-robot collaboration process based on the data of human motions, past interactions of the human-robot pair, and the human's current performance in the co-carry task. The trust level is evaluated dynamically throughout the collaborative task that allows the trust level to change if the human performs false positive actions, which can help the robot avoid making unpredictable movements and causing injury to the human. Experimental results showed that the robot effectively assisted the human in collaborative tasks through the proposed computational trust model.