Biblio

Filters: Author is Wang, Xiaolei  [Clear All Filters]
2022-05-05
Wei, Xiangxiang, Du, Gao-Ming, Wang, Xiaolei, Cao, Hongfang, Hu, Shijie, Zhang, Duoli, Li, Zhenmin.  2021.  FPGA Implementation of Hardware Accelerator for Real-time Video Image Edge Detection. 2021 IEEE 15th International Conference on Anti-counterfeiting, Security, and Identification (ASID). :16—20.
Image edge is considered to be the most important attribute to provide valuable image perception information. At present, video image data is developing towards high resolution and high frame number. The image data processing capacity is huge, so the processing speed is very strict to meet the real-time performance of image data transmission. In this context, we present a method to accelerate the real-time video image edge detection. FPGA is used as the development platform. The real-time edge detection algorithm of image data with 1280x720 resolution and 30 frame/s, combined with median filter, Sobel edge detection algorithm and corrosion expansion algorithm, makes the running time of image processing module shorter. The color image of the video image collected by camera is processed. The HDMI interface shows that the scheme has achieved ideal results in the FPGA hardware platform simulation model, greatly improves the efficiency of the algorithm, and provides a guarantee for the speed and stability of the real-time image processing system.
2021-08-02
Chai, Xinzhong, Wang, Yasen, Yan, Chuanxu, Zhao, Yuan, Chen, Wenlong, Wang, Xiaolei.  2020.  DQ-MOTAG: Deep Reinforcement Learning-based Moving Target Defense Against DDoS Attacks. 2020 IEEE Fifth International Conference on Data Science in Cyberspace (DSC). :375—379.
The rapid developments of mobile communication and wearable devices greatly improve our daily life, while the massive entities and emerging services also make Cyber-Physical System (CPS) much more complicated. The maintenance of CPS security tends to be more and more difficult. As a ”gamechanging” new active defense concept, Moving Target Defense (MTD) handle this tricky problem by periodically upsetting and recombining connections between users and servers in the protected system, which is so-called ”shuffle”. By this means, adversaries can hardly obtain enough time to compromise the potential victims, which is the indispensable condition to collect necessary information or conduct further malicious attacks. But every coin has two sides, MTD also introduce unbearable high energy consumption and resource occupation in the meantime, which hinders the large-scale application of MTD for quite a long time. In this paper, we propose a novel deep reinforcement learning-based MOTAG system called DQ-MOTAG. To our knowledge, this is the first work to provide self-adaptive shuffle period adjustment ability for MTD with reinforcement learning-based intelligent control mechanism. We also design an algorithm to generate optimal duration of next period to guide subsequent shuffle. Finally, we conduct a series of experiments to prove the availability and performance of DQ-MOTAG compared to exist methods. The result highlights our solution in terms of defense performance, error block rate and network source consumption.