Biblio

Filters: Author is Srivastava, Anurag K.  [Clear All Filters]
2021-09-16
Sarker, Partha S., Singh Saini, Amandeep, Sajan, K S, Srivastava, Anurag K..  2020.  CP-SAM: Cyber-Power Security Assessment and Resiliency Analysis Tool for Distribution System. 2020 Resilience Week (RWS). :188–193.
Cyber-power resiliency analysis of the distribution system is becoming critical with increase in adverse cyberevents. Distribution network operators need to assess and analyze the resiliency of the system utilizing the analytical tool with a carefully designed visualization and be driven by data and model-based analytics. This work introduces the Cyber-Physical Security Assessment Metric (CP-SAM) visualization tool to assist operators in ensuring the energy supply to critical loads during or after a cyber-attack. CP-SAM also provides decision support to operators utilizing measurement data and distribution power grid model and through well-designed visualization. The paper discusses the concepts of cyber-physical resiliency, software design considerations, open-source software components, and use cases for the tool to demonstrate the implementation and importance of the developed tool.
2022-04-20
Venkataramanan, Venkatesh, Srivastava, Anurag K., Hahn, Adam, Zonouz, Saman.  2019.  Measuring and Enhancing Microgrid Resiliency Against Cyber Threats. IEEE Transactions on Industry Applications. 55:6303—6312.
Recent cyber attacks on the power grid have been of increasing complexity and sophistication. In order to understand the impact of cyber-attacks on the power system resiliency, it is important to consider an holistic cyber-physical system specially with increasing industrial automation. In this study, device-level resilience properties of the various controllers and their impact on the microgrid resiliency is studied. In addition, a cyber-physical resiliency metric considering vulnerabilities, system model, and device-level properties is proposed. Resiliency is defined as the system ability to provide energy to critical loads even in extreme contingencies and depends on system ability to withstand, predict, and recover. A use case is presented inspired by the recent Ukraine cyber-attack. A use case has been presented to demonstrate application of the developed cyber-physical resiliency metric to enhance situational awareness of the operator, and enable better proactive or remedial control actions to improve resiliency.