Biblio

Filters: Author is Boddupalli, Srivalli  [Clear All Filters]
2023-03-17
Boddupalli, Srivalli, Chamarthi, Venkata Sai Gireesh, Lin, Chung-Wei, Ray, Sandip.  2022.  CAVELIER: Automated Security Evaluation for Connected Autonomous Vehicle Applications. 2022 IEEE 25th International Conference on Intelligent Transportation Systems (ITSC). :4335–4340.
Connected Autonomous Vehicle (CAV) applications have shown the promise of transformative impact on road safety, transportation experience, and sustainability. However, they open large and complex attack surfaces: an adversary can corrupt sensory and communication inputs with catastrophic results. A key challenge in development of security solutions for CAV applications is the lack of effective infrastructure for evaluating such solutions. In this paper, we address the problem by designing an automated, flexible evaluation infrastructure for CAV security solutions. Our tool, CAVELIER, provides an extensible evaluation architecture for CAV security solutions against compromised communication and sensor channels. The tool can be customized for a variety of CAV applications and to target diverse usage models. We illustrate the framework with a number of case studies for security resiliency evaluation in Cooperative Adaptive Cruise Control (CACC).
2021-09-16
Deb Nath, Atul Prasad, Boddupalli, Srivalli, Bhunia, Swarup, Ray, Sandip.  2020.  Resilient System-on-Chip Designs With NoC Fabrics. IEEE Transactions on Information Forensics and Security. 15:2808–2823.
Modern System-on-Chip (SoC) designs integrate a number of third party IPs (3PIPs) that coordinate and communicate through a Network-on-Chip (NoC) fabric to realize system functionality. An important class of SoC security attack involves a rogue IP tampering with the inter-IP communication. These attacks include message snoop, message mutation, message misdirection, IP masquerade, and message flooding. Static IP-level trust verification cannot protect against these SoC-level attacks. In this paper, we analyze the vulnerabilities of system level communication among IPs and develop a novel SoC security architecture that provides system resilience against exploitation by untrusted 3PIPs integrated over an NoC fabric. We show how to address the problem through a collection of fine-grained SoC security policies that enable on-the-fly monitoring and control of appropriate security-relevant events. Our approach, for the first time to our knowledge, provides an architecture-level solution for trusted SoC communication through run-time resilience in the presence of untrusted IPs. We demonstrate viability of our approach on a realistic SoC design through a series of attack models and show that our architecture incurs minimal to modest overhead in area, power, and system latency.
Conference Name: IEEE Transactions on Information Forensics and Security