Biblio
The continuing decrease in feature size of integrated circuits, and the increase of the complexity and cost of design and fabrication has led to outsourcing the design and fabrication of integrated circuits to third parties across the globe, and in turn has introduced several security vulnerabilities. The adversaries in the supply chain can pirate integrated circuits, overproduce these circuits, perform reverse engineering, and/or insert hardware Trojans in these circuits. Developing countermeasures against such security threats is highly crucial. Accordingly, this paper first develops a learning-based trust verification framework to detect hardware Trojans. To tackle Trojan insertion, IP piracy and overproduction, logic locking schemes and in particular stripped functionality logic locking is discussed and its resiliency against the state-of-the-art attacks is investigated.
In the era of globalized Integrated Circuit (IC) design and manufacturing flow, a rising issue to the silicon industry is various attacks on hardware intellectual property (IP). As a measure to ensure security along the supply chain against IP piracy, tampering and reverse engineering, hardware obfuscation is considered a reliable defense mechanism. Sequential and combinational obfuscations are the primary classes of obfuscation, and multiple methods have been proposed in each type in recent years. This paper presents an overview of obfuscation techniques and a qualitative comparison of the two major types.
Systematic implementation of System-on-Chip (SoC) security policies typically involves smart wrappers extracting local security critical events of interest from Intellectual Property (IP) blocks, together with a control engine that communicates with the wrappers to analyze the events for policy adherence. However, developing customized wrappers at each IP for security requirements may incur significant overhead in area and hardware resources. In this paper, we address this problem by exploiting the extensive design-for-debug (DfD) instrumentation already available on-chip. In addition to reduction in the overall hardware overhead, the approach also adds flexibility to the security architecture itself, e.g., permitting use of on-field DfD instrumentation, survivability and control hooks to patch security policy implementation in response to bugs and attacks found at post-silicon or changing security requirements on-field. We show how to design scalable interface between security and debug architectures that provides the benefits of flexibility to security policy implementation without interfering with existing debug and survivability use cases and at minimal additional cost in energy and design complexity.
The production and sale of counterfeit and substandard pharmaceutical products, such as essential medicines, is an important global public health problem. We describe a chemometric passport-based approach to improve the security of the pharmaceutical supply chain. Our method is based on applying nuclear quadrupole resonance (NQR) spectroscopy to authenticate the contents of medicine packets. NQR is a non-invasive, non-destructive, and quantitative radio frequency (RF) spectroscopic technique. It is sensitive to subtle features of the solid-state chemical environment and thus generates unique chemical fingerprints that are intrinsically difficult to replicate. We describe several advanced NQR techniques, including two-dimensional measurements, polarization enhancement, and spin density imaging, that further improve the security of our authentication approach. We also present experimental results that confirm the specificity and sensitivity of NQR and its ability to detect counterfeit medicines.
Hardware Trojan detection has emerged as a critical challenge to ensure security and trustworthiness of integrated circuits. A vast majority of research efforts in this area has utilized side-channel analysis for Trojan detection. Functional test generation for logic testing is a promising alternative but it may not be helpful if a Trojan cannot be fully activated or the Trojan effect cannot be propagated to the observable outputs. Side-channel analysis, on the other hand, can achieve significantly higher detection coverage for Trojans of all types/sizes, since it does not require activation/propagation of an unknown Trojan. However, they have often limited effectiveness due to poor detection sensitivity under large process variations and small Trojan footprint in side-channel signature. In this paper, we address this critical problem through a novel side-channel-aware test generation approach, based on a concept of Multiple Excitation of Rare Switching (MERS), that can significantly increase Trojan detection sensitivity. The paper makes several important contributions: i) it presents in detail the statistical test generation method, which can generate high-quality testset for creating high relative activity in arbitrary Trojan instances; ii) it analyzes the effectiveness of generated testset in terms of Trojan coverage; and iii) it describes two judicious reordering methods can further tune the testset and greatly improve the side channel sensitivity. Simulation results demonstrate that the tests generated by MERS can significantly increase the Trojans sensitivity, thereby making Trojan detection effective using side-channel analysis.
Hardware Trojan detection has emerged as a critical challenge to ensure security and trustworthiness of integrated circuits. A vast majority of research efforts in this area has utilized side-channel analysis for Trojan detection. Functional test generation for logic testing is a promising alternative but it may not be helpful if a Trojan cannot be fully activated or the Trojan effect cannot be propagated to the observable outputs. Side-channel analysis, on the other hand, can achieve significantly higher detection coverage for Trojans of all types/sizes, since it does not require activation/propagation of an unknown Trojan. However, they have often limited effectiveness due to poor detection sensitivity under large process variations and small Trojan footprint in side-channel signature. In this paper, we address this critical problem through a novel side-channel-aware test generation approach, based on a concept of Multiple Excitation of Rare Switching (MERS), that can significantly increase Trojan detection sensitivity. The paper makes several important contributions: i) it presents in detail the statistical test generation method, which can generate high-quality testset for creating high relative activity in arbitrary Trojan instances; ii) it analyzes the effectiveness of generated testset in terms of Trojan coverage; and iii) it describes two judicious reordering methods can further tune the testset and greatly improve the side channel sensitivity. Simulation results demonstrate that the tests generated by MERS can significantly increase the Trojans sensitivity, thereby making Trojan detection effective using side-channel analysis.