Biblio

Filters: Author is Sun, Wei  [Clear All Filters]
2023-06-09
Haggi, Hamed, Sun, Wei.  2022.  Cyber-Physical Vulnerability Assessment of P2P Energy Exchanges in Active Distribution Networks. 2022 IEEE Kansas Power and Energy Conference (KPEC). :1—5.
Owing to the decreasing costs of distributed energy resources (DERs) as well as decarbonization policies, power systems are undergoing a modernization process. The large deployment of DERs together with internet of things (IoT) devices provide a platform for peer-to-peer (P2P) energy trading in active distribution networks. However, P2P energy trading with IoT devices have driven the grid more vulnerable to cyber-physical threats. To this end, in this paper, a resilience-oriented P2P energy exchange model is developed considering three phase unbalanced distribution systems. In addition, various scenarios for vulnerability assessment of P2P energy exchanges considering adverse prosumers and consumers, who provide false information regarding the price and quantity with the goal of maximum financial benefit and system operation disruption, are considered. Techno-economic survivability analysis against these attacks are investigated on a IEEE 13-node unbalanced distribution test system. Simulation results demonstrate that adverse peers can affect the physical operation of grid, maximize their benefits, and cause financial loss of other agents.
2022-02-04
Sun, Wei.  2021.  Taguard: Exposing the Location of Active Eavesdropper in Passive RFID System. 2021 IEEE International Conference on Pervasive Computing and Communications Workshops and other Affiliated Events (PerCom Workshops). :360—363.

This paper exploits the possibility of exposing the location of active eavesdropper in commodity passive RFID system. Such active eavesdropper can activate the commodity passive RFID tags to achieve data eavesdropping and jamming. In this paper, we show that these active eavesdroppers can be significantly detrimental to the commodity passive RFID system on RFID data security and system feasibility. We believe that the best way to defeat the active eavesdropper in the commodity passive RFID system is to expose the location of the active eavesdropper and kick it out. To do so, we need to localize the active eavesdropper. However, we cannot extract the channel from the active eavesdropper, since we do not know what the active eavesdropper's transmission and the interference from the tag's backscattered signals. So, we propose an approach to mitigate the tag's interference and cancel out the active eavesdropper's transmission to obtain the subtraction-and-division features, which will be used as the input of the machine learning model to predict the location of active eavesdropper. Our preliminary results show the average accuracy of 96% for predicting the active eavesdropper's position in four grids of the surveillance plane.