Biblio

Filters: Author is Li, Ying  [Clear All Filters]
2023-01-05
Jiang, Xiping, Wang, Qian, Du, Mingming, Ding, Yilin, Hao, Jian, Li, Ying, Liu, Qingsong.  2022.  Research on GIS Isolating Switch Mechanical Fault Diagnosis based on Cross-Validation Parameter Optimization Support Vector Machine. 2022 IEEE International Conference on High Voltage Engineering and Applications (ICHVE). :1—4.
GIS equipment is an important component of power system, and mechanical failure often occurs in the process of equipment operation. In order to realize GIS equipment mechanical fault intelligent detection, this paper presents a mechanical fault diagnosis model for GIS equipment based on cross-validation parameter optimization support vector machine (CV-SVM). Firstly, vibration experiment of isolating switch was carried out based on true 110 kV GIS vibration simulation experiment platform. Vibration signals were sampled under three conditions: normal, plum finger angle change fault, plum finger abrasion fault. Then, the c and G parameters of SVM are optimized by cross validation method and grid search method. A CV-SVM model for mechanical fault diagnosis was established. Finally, training and verification are carried out by using the training set and test set models in different states. The results show that the optimization of cross-validation parameters can effectively improve the accuracy of SVM classification model. It can realize the accurate identification of GIS equipment mechanical fault. This method has higher diagnostic efficiency and performance stability than traditional machine learning. This study can provide reference for on-line monitoring and intelligent fault diagnosis analysis of GIS equipment mechanical vibration.
2023-02-17
Li, Ying, Chen, Lan, Wang, Jian, Gong, Guanfei.  2022.  Partial Reconfiguration for Run-time Memory Faults and Hardware Trojan Attacks Detection. 2022 IEEE International Symposium on Hardware Oriented Security and Trust (HOST). :173–176.
Embedded memory are important components in system-on-chip, which may be crippled by aging and wear faults or Hardware Trojan attacks to compromise run-time security. The current built-in self-test and pre-silicon verification lack efficiency and flexibility to solve this problem. To this end, we address such vulnerabilities by proposing a run-time memory security detecting framework in this paper. The solution builds mainly upon a centralized security detection controller for partially reconfigurable inspection content, and a static memory wrapper to handle access conflicts and buffering testing cells. We show that a field programmable gate array prototype of the proposed framework can pursue 16 memory faults and 3 types Hardware Trojans detection with one reconfigurable partition, whereas saves 12.7% area and 2.9% power overhead compared to a static implementation. This architecture has more scalable capability with little impact on the memory accessing throughput of the original chip system in run-time detection.
2022-03-09
Shi, Di-Bo, Xie, Huan, Ji, Yi, Li, Ying, Liu, Chun-Ping.  2021.  Deep Content Guidance Network for Arbitrary Style Transfer. 2021 International Joint Conference on Neural Networks (IJCNN). :1—8.
Arbitrary style transfer refers to generate a new image based on any set of existing images. Meanwhile, the generated image retains the content structure of one and the style pattern of another. In terms of content retention and style transfer, the recent arbitrary style transfer algorithms normally perform well in one, but it is difficult to find a trade-off between the two. In this paper, we propose the Deep Content Guidance Network (DCGN) which is stacked by content guidance (CG) layers. And each CG layer involves one position self-attention (pSA) module, one channel self-attention (cSA) module and one content guidance attention (cGA) module. Specially, the pSA module extracts more effective content information on the spatial layout of content images and the cSA module makes the style representation of style images in the channel dimension richer. And in the non-local view, the cGA module utilizes content information to guide the distribution of style features, which obtains a more detailed style expression. Moreover, we introduce a new permutation loss to generalize feature expression, so as to obtain abundant feature expressions while maintaining content structure. Qualitative and quantitative experiments verify that our approach can transform into better stylized images than the state-of-the-art methods.