Biblio
This contribution provides the implementation of a holistic operational security assessment process for both steady-state security and dynamic stability. The merging of steady-state and dynamic security assessment as a sequential process is presented. A steady-state and dynamic modeling of a VSC-HVDC was performed including curative and stabilizing measures as remedial actions. The assessment process was validated by a case study on a modified version of the Nordic 32 system. Simulation results showed that measure selection based on purely steady-state contingency analysis can lead to loss of stability in time domain. A subsequent selection of measures on the basis of the dynamic security assessment was able to guarantee the operational security for the stationary N-1 scenario as well as the power system stability.
In dynamic control centers, conventional SCADA systems are enhanced with novel assistance functionalities to increase existing monitoring and control capabilities. To achieve this, different key technologies like phasor measurement units (PMU) and Digital Twins (DT) are incorporated, which give rise to new cyber-security challenges. To address these issues, a four-stage threat analysis approach is presented to identify and assess system vulnerabilities for novel dynamic control center architectures. For this, a simplified risk assessment method is proposed, which allows a detailed analysis of the different system vulnerabilities considering various active and passive cyber-attack types. Qualitative results of the threat analysis are presented and discussed for different use cases at the control center and substation level.