Biblio

Filters: Author is Olowononi, Felix O.  [Clear All Filters]
2022-04-20
Olowononi, Felix O., Rawat, Danda B, Liu, Chunmei.  2021.  Resilient Machine Learning for Networked Cyber Physical Systems: A Survey for Machine Learning Security to Securing Machine Learning for CPS. IEEE Communications Surveys Tutorials. 23:524–552.
Cyber Physical Systems (CPS) are characterized by their ability to integrate the physical and information or cyber worlds. Their deployment in critical infrastructure have demonstrated a potential to transform the world. However, harnessing this potential is limited by their critical nature and the far reaching effects of cyber attacks on human, infrastructure and the environment. An attraction for cyber concerns in CPS rises from the process of sending information from sensors to actuators over the wireless communication medium, thereby widening the attack surface. Traditionally, CPS security has been investigated from the perspective of preventing intruders from gaining access to the system using cryptography and other access control techniques. Most research work have therefore focused on the detection of attacks in CPS. However, in a world of increasing adversaries, it is becoming more difficult to totally prevent CPS from adversarial attacks, hence the need to focus on making CPS resilient. Resilient CPS are designed to withstand disruptions and remain functional despite the operation of adversaries. One of the dominant methodologies explored for building resilient CPS is dependent on machine learning (ML) algorithms. However, rising from recent research in adversarial ML, we posit that ML algorithms for securing CPS must themselves be resilient. This article is therefore aimed at comprehensively surveying the interactions between resilient CPS using ML and resilient ML when applied in CPS. The paper concludes with a number of research trends and promising future research directions. Furthermore, with this article, readers can have a thorough understanding of recent advances on ML-based security and securing ML for CPS and countermeasures, as well as research trends in this active research area.
Conference Name: IEEE Communications Surveys Tutorials
2022-06-09
Olowononi, Felix O., Anwar, Ahmed H., Rawat, Danda B., Acosta, Jaime C., Kamhoua, Charles A..  2021.  Deep Learning for Cyber Deception in Wireless Networks. 2021 17th International Conference on Mobility, Sensing and Networking (MSN). :551–558.
Wireless communications networks are an integral part of intelligent systems that enhance the automation of various activities and operations embarked by humans. For example, the development of intelligent devices imbued with sensors leverages emerging technologies such as machine learning (ML) and artificial intelligence (AI), which have proven to enhance military operations through communication, control, intelligence gathering, and situational awareness. However, growing concerns in cybersecurity imply that attackers are always seeking to take advantage of the widened attack surface to launch adversarial attacks which compromise the activities of legitimate users. To address this challenge, we leverage on deep learning (DL) and the principle of cyber-deception to propose a method for defending wireless networks from the activities of jammers. Specifically, we use DL to regulate the power allocated to users and the channel they use to communicate, thereby luring jammers into attacking designated channels that are considered to guarantee maximum damage when attacked. Furthermore, by directing its energy towards the attack on a specific channel, other channels are freed up for actual transmission, ensuring secure communication. Through simulations and experiments carried out, we conclude that this approach enhances security in wireless communication systems.