Biblio
Filters: Author is Anwar, Ahmed H. [Clear All Filters]
Deep Learning for Cyber Deception in Wireless Networks. 2021 17th International Conference on Mobility, Sensing and Networking (MSN). :551–558.
.
2021. Wireless communications networks are an integral part of intelligent systems that enhance the automation of various activities and operations embarked by humans. For example, the development of intelligent devices imbued with sensors leverages emerging technologies such as machine learning (ML) and artificial intelligence (AI), which have proven to enhance military operations through communication, control, intelligence gathering, and situational awareness. However, growing concerns in cybersecurity imply that attackers are always seeking to take advantage of the widened attack surface to launch adversarial attacks which compromise the activities of legitimate users. To address this challenge, we leverage on deep learning (DL) and the principle of cyber-deception to propose a method for defending wireless networks from the activities of jammers. Specifically, we use DL to regulate the power allocated to users and the channel they use to communicate, thereby luring jammers into attacking designated channels that are considered to guarantee maximum damage when attacked. Furthermore, by directing its energy towards the attack on a specific channel, other channels are freed up for actual transmission, ensuring secure communication. Through simulations and experiments carried out, we conclude that this approach enhances security in wireless communication systems.
Honeypot Allocation for Cyber Deception in Internet of Battlefield Things Systems. MILCOM 2021 - 2021 IEEE Military Communications Conference (MILCOM). :1005–1010.
.
2021. Cyber deception plays an important role in both proactive and reactive defense systems. Internet of Battlefield things connecting smart devices of any military tactical network is of great importance. The goal of cyber deception is to provide false information regarding the network state, and topology to protect the IoBT's network devices. In this paper, we propose a novel deceptive approach based on game theory that takes into account the topological aspects of the network and the criticality of each device. To find the optimal deceptive strategy, we formulate a two-player game to study the interactions between the network defender and the adversary. The Nash equilibrium of the game model is characterized. Moreover, we propose a scalable game-solving algorithm to overcome the curse of dimensionality. This approach is based on solving a smaller in-size subgame per node. Our numerical results show that the proposed deception approach effectively reduced the impact and the reward of the attacker