Biblio
Filters: Author is Abdelzaher, Tarek [Clear All Filters]
Context-aware Collaborative Neuro-Symbolic Inference in IoBTs. MILCOM 2022 - 2022 IEEE Military Communications Conference (MILCOM). :1053—1058.
.
2022. IoBTs must feature collaborative, context-aware, multi-modal fusion for real-time, robust decision-making in adversarial environments. The integration of machine learning (ML) models into IoBTs has been successful at solving these problems at a small scale (e.g., AiTR), but state-of-the-art ML models grow exponentially with increasing temporal and spatial scale of modeled phenomena, and can thus become brittle, untrustworthy, and vulnerable when interpreting large-scale tactical edge data. To address this challenge, we need to develop principles and methodologies for uncertainty-quantified neuro-symbolic ML, where learning and inference exploit symbolic knowledge and reasoning, in addition to, multi-modal and multi-vantage sensor data. The approach features integrated neuro-symbolic inference, where symbolic context is used by deep learning, and deep learning models provide atomic concepts for symbolic reasoning. The incorporation of high-level symbolic reasoning improves data efficiency during training and makes inference more robust, interpretable, and resource-efficient. In this paper, we identify the key challenges in developing context-aware collaborative neuro-symbolic inference in IoBTs and review some recent progress in addressing these gaps.
IoBT-OS: Optimizing the Sensing-to-Decision Loop for the Internet of Battlefield Things. 2022 International Conference on Computer Communications and Networks (ICCCN). :1—10.
.
2022. Recent concepts in defense herald an increasing degree of automation of future military systems, with an emphasis on accelerating sensing-to-decision loops at the tactical edge, reducing their network communication footprint, and improving the inference quality of intelligent components in the loop. These requirements pose resource management challenges, calling for operating-system-like constructs that optimize the use of limited computational resources at the tactical edge. This paper describes these challenges and presents IoBT-OS, an operating system for the Internet of Battlefield Things that aims to optimize decision latency, improve decision accuracy, and reduce corresponding resource demands on computational and network components. A simple case-study with initial evaluation results is shown from a target tracking application scenario.
Optimizing Intelligent Edge-clouds with Partitioning, Compression and Speculative Inference. MILCOM 2021 - 2021 IEEE Military Communications Conference (MILCOM). :892–896.
.
2021. Internet of Battlefield Things (IoBTs) are well positioned to take advantage of recent technology trends that have led to the development of low-power neural accelerators and low-cost high-performance sensors. However, a key challenge that needs to be dealt with is that despite all the advancements, edge devices remain resource-constrained, thus prohibiting complex deep neural networks from deploying and deriving actionable insights from various sensors. Furthermore, deploying sophisticated sensors in a distributed manner to improve decision-making also poses an extra challenge of coordinating and exchanging data between the nodes and server. We propose an architecture that abstracts away these thorny deployment considerations from an end-user (such as a commander or warfighter). Our architecture can automatically compile and deploy the inference model into a set of distributed nodes and server while taking into consideration of the resource availability, variation, and uncertainties.