Biblio
Transactive Energy (TE) is an emerging discipline that utilizes economic and control techniques for operating and managing the power grid effectively. Distributed Energy Resources (DERs) represent a fundamental shift away from traditionally centrally managed energy generation and storage to one that is rather distributed. However, integrating and managing DERs into the power grid is highly challenging owing to the TE implementation issues such as privacy, equity, efficiency, reliability, and security. The TE market structures allow utilities to transact (i.e., buy and sell) power services (production, distribution, and storage) from/to DER providers integrated as part of the grid. Flexible power pricing in TE enables power services transactions to dynamically adjust power generation and storage in a way that continuously balances power supply and demand as well as minimize cost of grid operations. Therefore, it has become important to analyze various market models utilized in different TE applications for their impact on above implementation issues.In this demo, we show-case the Transactive Energy Simulation and Analysis Toolsuite (TE-SAT) with its three publicly available design studios for experimenting with TE markets. All three design studios are built using metamodeling tool called the Web-based Graphical Modeling Environment (WebGME). Using a Git-like storage and tracking backend server, WebGME enables multi-user editing on models and experiments using simply a web-browser. This directly facilitates collaboration among different TE stakeholders for developing and analyzing grid operations and market models. Additionally, these design studios provide an integrated and scalable cloud backend for running corresponding simulation experiments.
NIST, in collaboration with Vanderbilt University, has assembled an open-source tool set for designing and implementing federated, collaborative and interactive experiments with cyber-physical systems (CPS). These capabilities are used in our research on CPS at scale for Smart Grid, Smart Transportation, IoT and Smart Cities. This tool set, "Universal CPS Environment for Federation (UCEF)," includes a virtual machine (VM) to house the development environment, a graphical experiment designer, a model repository, and an initial set of integrated tools including the ability to compose Java, C++, MATLABTM, OMNeT++, GridLAB-D, and LabVIEWTM based federates into consolidated experiments. The experiments themselves are orchestrated using a ‘federation manager federate,’ and progressed using courses of action (COA) experiment descriptions. UCEF utilizes a method of uniformly wrapping federates into a federation. The UCEF VM is an integrated toolset for creating and running these experiments and uses High Level Architecture (HLA) Evolved to facilitate the underlying messaging and experiment orchestration. Our paper introduces the requirements and implementation of the UCEF technology and indicates how we intend to use it in CPS Measurement Science.
In the past couple of years, railway infrastructure has been growing more connected, resembling more of a traditional Cyber-Physical System model. Due to the tightly coupled nature between the cyber and physical domains, new attack vectors are emerging that create an avenue for remote hijacking of system components not designed to withstand such attacks. As such, best practice cybersecurity techniques need to be put in place to ensure the safety and resiliency of future railway designs, as well as infrastructure already in the field. However, traditional large-scale experimental evaluation that involves evaluating a large set of variables by running a design of experiments (DOE) may not always be practical and might not provide conclusive results. In addition, to achieve scalable experimentation, the modeling abstractions, simulation configurations, and experiment scenarios must be designed according to the analysis goals of the evaluations. Thus, it is useful to target a set of key operational metrics for evaluation and configure and extend the traditional DOE methods using these metrics. In this work, we present a metrics-driven evaluation approach for evaluating the security and resilience of railway critical infrastructure using a distributed simulation framework. A case study with experiment results is provided that demonstrates the capabilities of our testbed.
In-depth consideration and evaluation of security and resilience is necessary for developing the scientific foundations and technology of Cyber-Physical Systems (CPS). In this demonstration, we present SURE [1], a CPS experimentation and evaluation testbed for security and resilience focusing on transportation networks. The testbed includes (1) a heterogeneous modeling and simulation integration platform, (2) a Web-based tool for modeling CPS in adversarial environments, and (3) a framework for evaluating resilience using attacker-defender games. Users such as CPS designers and operators can interact with the testbed to evaluate monitoring and control schemes that include sensor placement and traffic signal configuration.
Abstract-Virtual evaluation of complex command and control concepts demands the use of heterogeneous simulation environments. Development challenges include how to integrate multiple simulation platforms with varying semantics and how to integrate simulation models and the complex interactions between them. While existing simulation frameworks may provide many of the required services needed to coordinate among multiple simulation platforms, they lack an overarching integration approach that connects and relates the semantics of heterogeneous domain models and their interactions. This paper outlines some of the challenges encountered in developing a command and control simulation environment and discusses our use of the GME meta-modeling tool-suite to create a model-based integration approach that allows for rapid synthesis of complex HLA-based simulation environments.
The research was conducted by Institute for Software Integrated Systems at Vanderbilt University, in collaboration with George Mason University, University of California at Berkeley, and University of Arizona.