Biblio

Filters: Author is Yan, Gangfeng  [Clear All Filters]
2020-08-24
LV, Zhining, HU, Ziheng, NING, Baifeng, DING, Lifu, Yan, Gangfeng, SHI, Xiasheng.  2019.  Non-intrusive Runtime Monitoring for Power System Intelligent Terminal Based on Improved Deep Belief Networks (I-DBN). 2019 4th International Conference on Power and Renewable Energy (ICPRE). :361–365.
Power system intelligent terminal equipment is widely used in real-time monitoring, data acquisition, power management, power distribution and other tasks of smart grid. The power system intelligent terminal can obtain various information of users and power companies in the power grid, but there is still a lack of protection means for the connection and communication process of the terminal components. In this paper, a novel method based on improved deep belief network(IDBN) is proposed to accomplish the business-level security monitoring and attack detection of power system terminal. A non-intrusive business-level monitoring platform for power system terminals is established, which uses energy metering intelligent terminals as an example for non-intrusive data collection. Based on this platform, the I-DBN extracts the spatial and temporal attack characteristics of the external monitoring data of the system. Some fault conditions and cyber attacks of the model have been simulated to demonstrate the effectiveness of the proposed detection method and the results show excellent performance. The method and platform proposed in this paper can be extended to other services in the power industry, providing a theoretical basis and implementation method for realizing the security monitoring of power system intelligent terminals from the business level.
2017-03-20
Wang, Yinan, Zeng, Sicheng, Yang, Qiang, Lin, Zhiyun, Xu, Wenyuan, Yan, Gangfeng.  2016.  A new framework of electrical cyber physical systems. :1334–1339.

This paper establishes a new framework for electrical cyber-physical systems (ECPSs). The communication network is designed by the characteristics of a power grid. The interdependent relationship of communication networks and power grids is described by data-uploading channels and commands-downloading channels. Control strategies (such as load shedding and relay protection) are extended to this new framework for analyzing the performance of ECPSs under several attack scenarios. The fragility of ECPSs under cyber attacks (DoS attack and false data injection attack) and the effectiveness of relay protection policies are verified by experimental results.