Biblio
Web applications are a frequent target of successful attacks. In most web frameworks, the damage is amplified by the fact that application code is responsible for security enforcement. In this paper, we design and evaluate Radiatus, a shared-nothing web framework where application-specific computation and storage on the server is contained within a sandbox with the privileges of the end-user. By strongly isolating users, user data and service availability can be protected from application vulnerabilities. To make Radiatus practical at the scale of modern web applications, we introduce a distributed capabilities system to allow fine-grained secure resource sharing across the many distributed services that compose an application. We analyze the strengths and weaknesses of a shared-nothing web architecture, which protects applications from a large class of vulnerabilities, but adds an overhead of 60.7% per server and requires an additional 31MB of memory per active user. We demonstrate that the system can scale to 20K operations per second on a 500-node AWS cluster.
Internet Service Providers (ISPs) use the Border Gateway Protocol (BGP) to announce and exchange routes for de- livering packets through the internet. ISPs must carefully configure their BGP routers to ensure traffic is routed reli- ably and securely. Correctly configuring BGP routers has proven challenging in practice, and misconfiguration has led to worldwide outages and traffic hijacks. This paper presents Bagpipe, a system that enables ISPs to declaratively express BGP policies and that automatically verifies that router configurations implement such policies. The novel initial network reduction soundly reduces policy verification to a search for counterexamples in a finite space. An SMT-based symbolic execution engine performs this search efficiently. Bagpipe reduces the size of its search space using predicate abstraction and parallelizes its search using symbolic variable hoisting. Bagpipe's policy specification language is expressive: we expressed policies inferred from real AS configurations, policies from the literature, and policies for 10 Juniper TechLibrary configuration scenarios. Bagpipe is efficient: we ran it on three ASes with a total of over 240,000 lines of Cisco and Juniper BGP configuration. Bagpipe is effective: it revealed 19 policy violations without issuing any false positives.