Biblio

Filters: Author is Fu, Kevin  [Clear All Filters]
2022-05-10
Ji, Xiaoyu, Cheng, Yushi, Zhang, Yuepeng, Wang, Kai, Yan, Chen, Xu, Wenyuan, Fu, Kevin.  2021.  Poltergeist: Acoustic Adversarial Machine Learning against Cameras and Computer Vision. 2021 IEEE Symposium on Security and Privacy (SP). :160–175.
Autonomous vehicles increasingly exploit computer-vision-based object detection systems to perceive environments and make critical driving decisions. To increase the quality of images, image stabilizers with inertial sensors are added to alleviate image blurring caused by camera jitters. However, such a trend opens a new attack surface. This paper identifies a system-level vulnerability resulting from the combination of the emerging image stabilizer hardware susceptible to acoustic manipulation and the object detection algorithms subject to adversarial examples. By emitting deliberately designed acoustic signals, an adversary can control the output of an inertial sensor, which triggers unnecessary motion compensation and results in a blurred image, even if the camera is stable. The blurred images can then induce object misclassification affecting safety-critical decision making. We model the feasibility of such acoustic manipulation and design an attack framework that can accomplish three types of attacks, i.e., hiding, creating, and altering objects. Evaluation results demonstrate the effectiveness of our attacks against four academic object detectors (YOLO V3/V4/V5 and Fast R-CNN), and one commercial detector (Apollo). We further introduce the concept of AMpLe attacks, a new class of system-level security vulnerabilities resulting from a combination of adversarial machine learning and physics-based injection of information-carrying signals into hardware.
2017-05-18
Hester, Josiah, Tobias, Nicole, Rahmati, Amir, Sitanayah, Lanny, Holcomb, Daniel, Fu, Kevin, Burleson, Wayne P., Sorber, Jacob.  2016.  Persistent Clocks for Batteryless Sensing Devices. ACM Trans. Embed. Comput. Syst.. 15:77:1–77:28.

Sensing platforms are becoming batteryless to enable the vision of the Internet of Things, where trillions of devices collect data, interact with each other, and interact with people. However, these batteryless sensing platforms—that rely purely on energy harvesting—are rarely able to maintain a sense of time after a power failure. This makes working with sensor data that is time sensitive especially difficult. We propose two novel, zero-power timekeepers that use remanence decay to measure the time elapsed between power failures. Our approaches compute the elapsed time from the amount of decay of a capacitive device, either on-chip Static Random-Access Memory (SRAM) or a dedicated capacitor. This enables hourglass-like timers that give intermittently powered sensing devices a persistent sense of time. Our evaluation shows that applications using either timekeeper can keep time accurately through power failures as long as 45s with low overhead.