Biblio

Filters: Author is Khaledi, Mehrad  [Clear All Filters]
2017-05-19
Khaledi, Mojgan, Khaledi, Mehrad, Kasera, Sneha Kumar, Patwari, Neal.  2016.  Preserving Location Privacy in Radio Networks Using a Stackelberg Game Framework. Proceedings of the 12th ACM Symposium on QoS and Security for Wireless and Mobile Networks. :29–37.

Radio network information is leaked well beyond the perimeter in which the radio network is deployed. We investigate attacks where person location can be inferred using the radio characteristics of wireless links (e.g., the received signal strength). An attacker can deploy a network of receivers which measure the received signal strength of the radio signals transmitted by the legitimate wireless devices inside a perimeter, allowing the attacker to learn the locations of people moving in the vicinity of the devices inside the perimeter. In this paper, we develop the first solution to this location privacy problem where neither the attacker nodes nor the tracked moving object transmit any RF signals. We first model the radio network leakage attack using a Stackelberg game. Next, we define utility and cost functions related to the defender and attacker actions. Last, using our utility and cost functions, we find the optimal strategy for the defender by applying a greedy method. We evaluate our game theoretic framework using experiments and find that our approach significantly reduces the chance of an attacker determining the location of people inside a perimeter.