Biblio

Filters: Author is Kasera, Sneha Kumar  [Clear All Filters]
2017-05-22
Khaledi, Mojgan, Khaledi, Mehrdad, Kasera, Sneha Kumar.  2016.  Profitable Task Allocation in Mobile Cloud Computing. Proceedings of the 12th ACM Symposium on QoS and Security for Wireless and Mobile Networks. :9–17.

We propose a game theoretic framework for task allocation in mobile cloud computing that corresponds to offloading of compute tasks to a group of nearby mobile devices. Specifically, in our framework, a distributor node holds a multidimensional auction for allocating the tasks of a job among nearby mobile nodes based on their computational capabilities and also the cost of computation at these nodes, with the goal of reducing the overall job completion time. Our proposed auction also has the desired incentive compatibility property that ensures that mobile devices truthfully reveal their capabilities and costs and that those devices benefit from the task allocation. To deal with node mobility, we perform multiple auctions over adaptive time intervals. We develop a heuristic approach to dynamically find the best time intervals between auctions to minimize unnecessary auctions and the accompanying overheads. We evaluate our framework and methods using both real world and synthetic mobility traces. Our evaluation results show that our game theoretic framework improves the job completion time by a factor of 2-5 in comparison to the time taken for executing the job locally, while minimizing the number of auctions and the accompanying overheads. Our approach is also profitable for the nearby nodes that execute the distributor's tasks with these nodes receiving a compensation higher than their actual costs.

2017-05-19
Khaledi, Mojgan, Khaledi, Mehrad, Kasera, Sneha Kumar, Patwari, Neal.  2016.  Preserving Location Privacy in Radio Networks Using a Stackelberg Game Framework. Proceedings of the 12th ACM Symposium on QoS and Security for Wireless and Mobile Networks. :29–37.

Radio network information is leaked well beyond the perimeter in which the radio network is deployed. We investigate attacks where person location can be inferred using the radio characteristics of wireless links (e.g., the received signal strength). An attacker can deploy a network of receivers which measure the received signal strength of the radio signals transmitted by the legitimate wireless devices inside a perimeter, allowing the attacker to learn the locations of people moving in the vicinity of the devices inside the perimeter. In this paper, we develop the first solution to this location privacy problem where neither the attacker nodes nor the tracked moving object transmit any RF signals. We first model the radio network leakage attack using a Stackelberg game. Next, we define utility and cost functions related to the defender and attacker actions. Last, using our utility and cost functions, we find the optimal strategy for the defender by applying a greedy method. We evaluate our game theoretic framework using experiments and find that our approach significantly reduces the chance of an attacker determining the location of people inside a perimeter.