Biblio

Filters: Author is Shoukry, Yasser  [Clear All Filters]
2022-06-06
Elmalaki, Salma, Ho, Bo-Jhang, Alzantot, Moustafa, Shoukry, Yasser, Srivastava, Mani.  2019.  SpyCon: Adaptation Based Spyware in Human-in-the-Loop IoT. 2019 IEEE Security and Privacy Workshops (SPW). :163–168.
Personalized IoT adapt their behavior based on contextual information, such as user behavior and location. Unfortunately, the fact that personalized IoT adapt to user context opens a side-channel that leaks private information about the user. To that end, we start by studying the extent to which a malicious eavesdropper can monitor the actions taken by an IoT system and extract user's private information. In particular, we show two concrete instantiations (in the context of mobile phones and smart homes) of a new category of spyware which we refer to as Context-Aware Adaptation Based Spyware (SpyCon). Experimental evaluations show that the developed SpyCon can predict users' daily behavior with an accuracy of 90.3%. Being a new spyware with no known prior signature or behavior, traditional spyware detection that is based on code signature or system behavior are not adequate to detect SpyCon. We discuss possible detection and mitigation mechanisms that can hinder the effect of SpyCon.
2018-05-15
2018-05-25
2017-05-19
Shoukry, Yasser, Chong, Michelle, Wakaiki, Masashi, Nuzzo, Pierluigi, Sangiovanni-Vincentelli, Alberto L., Seshia, Sanjit A., Hespanha, João P., Tabuada, Paulo.  2016.  SMT-based Observer Design for Cyber-physical Systems Under Sensor Attacks. Proceedings of the 7th International Conference on Cyber-Physical Systems. :29:1–29:10.

We introduce a scalable observer architecture to estimate the states of a discrete-time linear-time-invariant (LTI) system whose sensors can be manipulated by an attacker. Given the maximum number of attacked sensors, we build on previous results on necessary and sufficient conditions for state estimation, and propose a novel multi-modal Luenberger (MML) observer based on efficient Satisfiability Modulo Theory (SMT) solving. We present two techniques to reduce the complexity of the estimation problem. As a first strategy, instead of a bank of distinct observers, we use a family of filters sharing a single dynamical equation for the states, but different output equations, to generate estimates corresponding to different subsets of sensors. Such an architecture can reduce the memory usage of the observer from an exponential to a linear function of the number of sensors. We then develop an efficient SMT-based decision procedure that is able to reason about the estimates of the MML observer to detect at runtime which sets of sensors are attack-free, and use them to obtain a correct state estimate. We provide proofs of convergence for our algorithm and report simulation results to compare its runtime performance with alternative techniques. Our algorithm scales well for large systems (including up to 5000 sensors) for which many previously proposed algorithms are not implementable due to excessive memory and time requirements. Finally, we illustrate the effectiveness of our algorithm on the design of resilient power distribution systems.