Biblio

Filters: Author is Zhang, Qian  [Clear All Filters]
2023-08-03
Zhang, Yuhang, Zhang, Qian, Jiang, Man, Su, Jiangtao.  2022.  SCGAN: Generative Adversarial Networks of Skip Connection for Face Image Inpainting. 2022 Ninth International Conference on Social Networks Analysis, Management and Security (SNAMS). :1–6.
Deep learning has been widely applied for jobs involving face inpainting, however, there are usually some problems, such as incoherent inpainting edges, lack of diversity of generated images and other problems. In order to get more feature information and improve the inpainting effect, we therefore propose a Generative Adversarial Network of Skip Connection (SCGAN), which connects the encoder layers and the decoder layers by skip connection in the generator. The coherence and consistency of the image inpainting edges are improved, and the finer features of the image inpainting are refined, simultaneously using the discriminator's local and global double discriminators model. We also employ WGAN-GP loss to enhance model stability during training, prevent model collapse, and increase the variety of inpainting face images. Finally, experiments on the CelebA dataset and the LFW dataset are performed, and the model's performance is assessed using the PSNR and SSIM indices. Our model's face image inpainting is more realistic and coherent than that of other models, and the model training is more reliable.
ISSN: 2831-7343
2022-04-22
Zhang, Qian, Rothe, Stefan, Koukourakis, Nektarios, Czarske, Jürgen.  2021.  Multimode Fiber Transmission Matrix Inversion with Densely Connected Convolutional Network for Physical Layer Security. 2021 Conference on Lasers and Electro-Optics (CLEO). :1—2.
For exploiting multimode fiber optic communication networks towards physical layer security, we have trained a neural network performing mode decomposition of 10 modes. The approach is based on intensity-only camera images and works in real-time.
2021-07-08
Cao, Yetong, Zhang, Qian, Li, Fan, Yang, Song, Wang, Yu.  2020.  PPGPass: Nonintrusive and Secure Mobile Two-Factor Authentication via Wearables. IEEE INFOCOM 2020 - IEEE Conference on Computer Communications. :1917—1926.
{Mobile devices are promising to apply two-factor authentication in order to improve system security and enhance user privacy-preserving. Existing solutions usually have certain limits of requiring some form of user effort, which might seriously affect user experience and delay authentication time. In this paper, we propose PPGPass, a novel mobile two-factor authentication system, which leverages Photoplethysmography (PPG) sensors in wrist-worn wearables to extract individual characteristics of PPG signals. In order to realize both nonintrusive and secure, we design a two-stage algorithm to separate clean heartbeat signals from PPG signals contaminated by motion artifacts, which allows verifying users without intentionally staying still during the process of authentication. In addition, to deal with non-cancelable issues when biometrics are compromised, we design a repeatable and non-invertible method to generate cancelable feature templates as alternative credentials, which enables to defense against man-in-the-middle attacks and replay attacks. To the best of our knowledge, PPGPass is the first nonintrusive and secure mobile two-factor authentication based on PPG sensors in wearables. We build a prototype of PPGPass and conduct the system with comprehensive experiments involving multiple participants. PPGPass can achieve an average F1 score of 95.3%, which confirms its high effectiveness, security, and usability}.
2017-09-05
Wang, Wei, Yang, Lin, Zhang, Qian.  2016.  Touch-and-guard: Secure Pairing Through Hand Resonance. Proceedings of the 2016 ACM International Joint Conference on Pervasive and Ubiquitous Computing. :670–681.

Securely pairing wearables with another device is the key to many promising applications, such as mobile payment, sensitive data transfer and secure interactions with smart home devices. This paper presents Touch-And-Guard (TAG), a system that uses hand touch as an intuitive manner to establish a secure connection between a wristband wearable and the touched device. It generates secret bits from hand resonant properties, which are obtained using accelerometers and vibration motors. The extracted secret bits are used by both sides to authenticate each other and then communicate confidentially. The ubiquity of accelerometers and motors presents an immediate market for our system. We demonstrate the feasibility of our system using an experimental prototype and conduct experiments involving 12 participants with 1440 trials. The results indicate that we can generate secret bits at a rate of 7.84 bit/s, which is 58% faster than conventional text input PIN authentication. We also show that our system is resistant to acoustic eavesdroppers in proximity.