Biblio

Filters: Author is Bos, Herbert  [Clear All Filters]
2021-08-17
Kurth, Michael, Gras, Ben, Andriesse, Dennis, Giuffrida, Cristiano, Bos, Herbert, Razavi, Kaveh.  2020.  NetCAT: Practical Cache Attacks from the Network. 2020 IEEE Symposium on Security and Privacy (SP). :20—38.
Increased peripheral performance is causing strain on the memory subsystem of modern processors. For example, available DRAM throughput can no longer sustain the traffic of a modern network card. Scrambling to deliver the promised performance, instead of transferring peripheral data to and from DRAM, modern Intel processors perform I/O operations directly on the Last Level Cache (LLC). While Direct Cache Access (DCA) instead of Direct Memory Access (DMA) is a sensible performance optimization, it is unfortunately implemented without care for security, as the LLC is now shared between the CPU and all the attached devices, including the network card.In this paper, we reverse engineer the behavior of DCA, widely referred to as Data-Direct I/O (DDIO), on recent Intel processors and present its first security analysis. Based on our analysis, we present NetCAT, the first Network-based PRIME+PROBE Cache Attack on the processor's LLC of a remote machine. We show that NetCAT not only enables attacks in cooperative settings where an attacker can build a covert channel between a network client and a sandboxed server process (without network), but more worryingly, in general adversarial settings. In such settings, NetCAT can enable disclosure of network timing-based sensitive information. As an example, we show a keystroke timing attack on a victim SSH connection belonging to another client on the target server. Our results should caution processor vendors against unsupervised sharing of (additional) microarchitectural components with peripherals exposed to malicious input.
2019-02-08
Kroes, Taddeus, Altinay, Anil, Nash, Joseph, Na, Yeoul, Volckaert, Stijn, Bos, Herbert, Franz, Michael, Giuffrida, Cristiano.  2018.  BinRec: Attack Surface Reduction Through Dynamic Binary Recovery. Proceedings of the 2018 Workshop on Forming an Ecosystem Around Software Transformation. :8-13.

Compile-time specialization and feature pruning through static binary rewriting have been proposed repeatedly as techniques for reducing the attack surface of large programs, and for minimizing the trusted computing base. We propose a new approach to attack surface reduction: dynamic binary lifting and recompilation. We present BinRec, a binary recompilation framework that lifts binaries to a compiler-level intermediate representation (IR) to allow complex transformations on the captured code. After transformation, BinRec lowers the IR back to a "recovered" binary, which is semantically equivalent to the input binary, but does have its unnecessary features removed. Unlike existing approaches, which are mostly based on static analysis and rewriting, our framework analyzes and lifts binaries dynamically. The crucial advantage is that we can not only observe the full program including all of its dependencies, but we can also determine which program features the end-user actually uses. We evaluate the correctness and performance of BinRec, and show that our approach enables aggressive pruning of unwanted features in COTS binaries.

2019-02-14
Jain, Vivek, Rawat, Sanjay, Giuffrida, Cristiano, Bos, Herbert.  2018.  TIFF: Using Input Type Inference To Improve Fuzzing. Proceedings of the 34th Annual Computer Security Applications Conference. :505-517.

Developers commonly use fuzzing techniques to hunt down all manner of memory corruption vulnerabilities during the testing phase. Irrespective of the fuzzer, input mutation plays a central role in providing adequate code coverage, as well as in triggering bugs. However, each class of memory corruption bugs requires a different trigger condition. While the goal of a fuzzer is to find bugs, most existing fuzzers merely approximate this goal by targeting their mutation strategies toward maximizing code coverage. In this work, we present a new mutation strategy that maximizes the likelihood of triggering memory-corruption bugs by generating fewer, but better inputs. In particular, our strategy achieves bug-directed mutation by inferring the type of the input bytes. To do so, it tags each offset of the input with a basic type (e.g., 32-bit integer, string, array etc.), while deriving mutation rules for specific classes of bugs. We infer types by means of in-memory data-structure identification and dynamic taint analysis, and implement our novel mutation strategy in a fully functional fuzzer which we call TIFF (Type Inference-based Fuzzing Framework). Our evaluation on real-world applications shows that type-based fuzzing triggers bugs much earlier than existing solutions, while maintaining high code coverage. For example, on several real-world applications and libraries (e.g., poppler, mpg123 etc.), we find real bugs (with known CVEs) in almost half of the time and upto an order of magnitude fewer inputs than state-of-the-art fuzzers.

2018-11-19
Konoth, Radhesh Krishnan, Vineti, Emanuele, Moonsamy, Veelasha, Lindorfer, Martina, Kruegel, Christopher, Bos, Herbert, Vigna, Giovanni.  2018.  MineSweeper: An In-Depth Look into Drive-by Cryptocurrency Mining and Its Defense. Proceedings of the 2018 ACM SIGSAC Conference on Computer and Communications Security. :1714–1730.

A wave of alternative coins that can be effectively mined without specialized hardware, and a surge in cryptocurrencies' market value has led to the development of cryptocurrency mining ( cryptomining ) services, such as Coinhive, which can be easily integrated into websites to monetize the computational power of their visitors. While legitimate website operators are exploring these services as an alternative to advertisements, they have also drawn the attention of cybercriminals: drive-by mining (also known as cryptojacking ) is a new web-based attack, in which an infected website secretly executes JavaScript code and/or a WebAssembly module in the user's browser to mine cryptocurrencies without her consent. In this paper, we perform a comprehensive analysis on Alexa's Top 1 Million websites to shed light on the prevalence and profitability of this attack. We study the websites affected by drive-by mining to understand the techniques being used to evade detection, and the latest web technologies being exploited to efficiently mine cryptocurrency. As a result of our study, which covers 28 Coinhive-like services that are widely being used by drive-by mining websites, we identified 20 active cryptomining campaigns. Motivated by our findings, we investigate possible countermeasures against this type of attack. We discuss how current blacklisting approaches and heuristics based on CPU usage are insufficient, and present MineSweeper, a novel detection technique that is based on the intrinsic characteristics of cryptomining code, and, thus, is resilient to obfuscation. Our approach could be integrated into browsers to warn users about silent cryptomining when visiting websites that do not ask for their consent.

2018-01-23
van der Veen, Victor, Andriesse, Dennis, Stamatogiannakis, Manolis, Chen, Xi, Bos, Herbert, Giuffrdia, Cristiano.  2017.  The Dynamics of Innocent Flesh on the Bone: Code Reuse Ten Years Later. Proceedings of the 2017 ACM SIGSAC Conference on Computer and Communications Security. :1675–1689.

In 2007, Shacham published a seminal paper on Return-Oriented Programming (ROP), the first systematic formulation of code reuse. The paper has been highly influential, profoundly shaping the way we still think about code reuse today: an attacker analyzes the "geometry" of victim binary code to locate gadgets and chains these to craft an exploit. This model has spurred much research, with a rapid progression of increasingly sophisticated code reuse attacks and defenses over time. After ten years, the common perception is that state-of-the-art code reuse defenses are effective in significantly raising the bar and making attacks exceedingly hard. In this paper, we challenge this perception and show that an attacker going beyond "geometry" (static analysis) and considering the "dynamics" (dynamic analysis) of a victim program can easily find function call gadgets even in the presence of state-of-the-art code-reuse defenses. To support our claims, we present Newton, a run-time gadget-discovery framework based on constraint-driven dynamic taint analysis. Newton can model a broad range of defenses by mapping their properties into simple, stackable, reusable constraints, and automatically generate gadgets that comply with these constraints. Using Newton, we systematically map and compare state-of-the-art defenses, demonstrating that even simple interactions with popular server programs are adequate for finding gadgets for all state-of-the-art code-reuse defenses. We conclude with an nginx case study, which shows that a Newton-enabled attacker can craft attacks which comply with the restrictions of advanced defenses, such as CPI and context-sensitive CFI.

2017-08-02
Bacs, Andrei, Giuffrida, Cristiano, Grill, Bernhard, Bos, Herbert.  2016.  Slick: An Intrusion Detection System for Virtualized Storage Devices. Proceedings of the 31st Annual ACM Symposium on Applied Computing. :2033–2040.

Cloud computing is rapidly reshaping the server administration landscape. The widespread use of virtualization and the increasingly high server consolidation ratios, in particular, have introduced unprecedented security challenges for users, increasing the exposure to intrusions and opening up new opportunities for attacks. Deploying security mechanisms in the hypervisor to detect and stop intrusion attempts is a promising strategy to address this problem. Existing hypervisor-based solutions, however, are typically limited to very specific classes of attacks and introduce exceedingly high performance overhead for production use. In this paper, we present Slick (Storage-Level Intrusion ChecKer), an intrusion detection system (IDS) for virtualized storage devices. Slick detects intrusion attempts by efficiently and transparently monitoring write accesses to critical regions on storage devices. The low-overhead monitoring component operates entirely inside the hypervisor, with no introspection or modifications required in the guest VMs. Using Slick, users can deploy generic IDS rules to detect a broad range of real-world intrusions in a flexible and practical way. Experimental results confirm that Slick is effective at enhancing the security of virtualized servers, while imposing less than 5% overhead in production.

2017-05-30
Haller, Istvan, Jeon, Yuseok, Peng, Hui, Payer, Mathias, Giuffrida, Cristiano, Bos, Herbert, van der Kouwe, Erik.  2016.  TypeSan: Practical Type Confusion Detection. Proceedings of the 2016 ACM SIGSAC Conference on Computer and Communications Security. :517–528.

The low-level C++ programming language is ubiquitously used for its modularity and performance. Typecasting is a fundamental concept in C++ (and object-oriented programming in general) to convert a pointer from one object type into another. However, downcasting (converting a base class pointer to a derived class pointer) has critical security implications due to potentially different object memory layouts. Due to missing type safety in C++, a downcasted pointer can violate a programmer's intended pointer semantics, allowing an attacker to corrupt the underlying memory in a type-unsafe fashion. This vulnerability class is receiving increasing attention and is known as type confusion (or bad-casting). Several existing approaches detect different forms of type confusion, but these solutions are severely limited due to both high run-time performance overhead and low detection coverage. This paper presents TypeSan, a practical type-confusion detector which provides both low run-time overhead and high detection coverage. Despite improving the coverage of state-of-the-art techniques, TypeSan significantly reduces the type-confusion detection overhead compared to other solutions. TypeSan relies on an efficient per-object metadata storage service based on a compact memory shadowing scheme. Our scheme treats all the memory objects (i.e., globals, stack, heap) uniformly to eliminate extra checks on the fast path and relies on a variable compression ratio to minimize run-time performance and memory overhead. Our experimental results confirm that TypeSan is practical, even when explicitly checking almost all the relevant typecasts in a given C++ program. Compared to the state of the art, TypeSan yields orders of magnitude higher coverage at 4–10 times lower performance overhead on SPEC and 2 times on Firefox. As a result, our solution offers superior protection and is suitable for deployment in production software. Moreover, our highly efficient metadata storage back-end is potentially useful for other defenses that require memory object tracking.

2015-04-30
Welzel, Arne, Rossow, Christian, Bos, Herbert.  2014.  On Measuring the Impact of DDoS Botnets. Proceedings of the Seventh European Workshop on System Security. :3:1–3:6.

Miscreants use DDoS botnets to attack a victim via a large number of malware-infected hosts, combining the bandwidth of the individual PCs. Such botnets have thus a high potential to render targeted services unavailable. However, the actual impact of attacks by DDoS botnets has never been evaluated. In this paper, we monitor C&C servers of 14 DirtJumper and Yoddos botnets and record the DDoS targets of these networks. We then aim to evaluate the availability of the DDoS victims, using a variety of measurements such as TCP response times and analyzing the HTTP content. We show that more than 65% of the victims are severely affected by the DDoS attacks, while also a few DDoS attacks likely failed.