Biblio
Denial-of-Service attacks have rapidly increased in terms of frequency and intensity, steadily becoming one of the biggest threats to Internet stability and reliability. However, a rigorous comprehensive characterization of this phenomenon, and of countermeasures to mitigate the associated risks, faces many infrastructure and analytic challenges. We make progress toward this goal, by introducing and applying a new framework to enable a macroscopic characterization of attacks, attack targets, and DDoS Protection Services (DPSs). Our analysis leverages data from four independent global Internet measurement infrastructures over the last two years: backscatter traffic to a large network telescope; logs from amplification honeypots; a DNS measurement platform covering 60% of the current namespace; and a DNS-based data set focusing on DPS adoption. Our results reveal the massive scale of the DoS problem, including an eye-opening statistic that one-third of all / 24 networks recently estimated to be active on the Internet have suffered at least one DoS attack over the last two years. We also discovered that often targets are simultaneously hit by different types of attacks. In our data, Web servers were the most prominent attack target; an average of 3% of the Web sites in .com, .net, and .org were involved with attacks, daily. Finally, we shed light on factors influencing migration to a DPS.
Amplification DDoS attacks have gained popularity and become a serious threat to Internet participants. However, little is known about where these attacks originate, and revealing the attack sources is a non-trivial problem due to the spoofed nature of the traffic. In this paper, we present novel techniques to uncover the infrastructures behind amplification DDoS attacks. We follow a two-step approach to tackle this challenge: First, we develop a methodology to impose a fingerprint on scanners that perform the reconnaissance for amplification attacks that allows us to link subsequent attacks back to the scanner. Our methodology attributes over 58% of attacks to a scanner with a confidence of over 99.9%. Second, we use Time-to-Live-based trilateration techniques to map scanners to the actual infrastructures launching the attacks. Using this technique, we identify 34 networks as being the source for amplification attacks at 98\textbackslash% certainty.
Miscreants use DDoS botnets to attack a victim via a large number of malware-infected hosts, combining the bandwidth of the individual PCs. Such botnets have thus a high potential to render targeted services unavailable. However, the actual impact of attacks by DDoS botnets has never been evaluated. In this paper, we monitor C&C servers of 14 DirtJumper and Yoddos botnets and record the DDoS targets of these networks. We then aim to evaluate the availability of the DDoS victims, using a variety of measurements such as TCP response times and analyzing the HTTP content. We show that more than 65% of the victims are severely affected by the DDoS attacks, while also a few DDoS attacks likely failed.
Rogue software, such as Fake A/V and ransomware, trick users into paying without giving return. We show that using a perceptual hash function and hierarchical clustering, more than 213,671 screenshots of executed malware samples can be grouped into subsets of structurally similar images, reflecting image clusters of one malware family or campaign. Based on the clustering results, we show that ransomware campaigns favor prepay payment methods such as ukash, paysafecard and moneypak, while Fake A/V campaigns use credit cards for payment. Furthermore, especially given the low A/V detection rates of current rogue software – sometimes even as low as 11% – our screenshot analysis approach could serve as a complementary last line of defense.