Biblio

Filters: Author is Krupp, Johannes  [Clear All Filters]
2018-02-06
Jonker, Mattijs, King, Alistair, Krupp, Johannes, Rossow, Christian, Sperotto, Anna, Dainotti, Alberto.  2017.  Millions of Targets Under Attack: A Macroscopic Characterization of the DoS Ecosystem. Proceedings of the 2017 Internet Measurement Conference. :100–113.

Denial-of-Service attacks have rapidly increased in terms of frequency and intensity, steadily becoming one of the biggest threats to Internet stability and reliability. However, a rigorous comprehensive characterization of this phenomenon, and of countermeasures to mitigate the associated risks, faces many infrastructure and analytic challenges. We make progress toward this goal, by introducing and applying a new framework to enable a macroscopic characterization of attacks, attack targets, and DDoS Protection Services (DPSs). Our analysis leverages data from four independent global Internet measurement infrastructures over the last two years: backscatter traffic to a large network telescope; logs from amplification honeypots; a DNS measurement platform covering 60% of the current namespace; and a DNS-based data set focusing on DPS adoption. Our results reveal the massive scale of the DoS problem, including an eye-opening statistic that one-third of all / 24 networks recently estimated to be active on the Internet have suffered at least one DoS attack over the last two years. We also discovered that often targets are simultaneously hit by different types of attacks. In our data, Web servers were the most prominent attack target; an average of 3% of the Web sites in .com, .net, and .org were involved with attacks, daily. Finally, we shed light on factors influencing migration to a DPS.

2017-09-15
Krupp, Johannes, Backes, Michael, Rossow, Christian.  2016.  Identifying the Scan and Attack Infrastructures Behind Amplification DDoS Attacks. Proceedings of the 2016 ACM SIGSAC Conference on Computer and Communications Security. :1426–1437.

Amplification DDoS attacks have gained popularity and become a serious threat to Internet participants. However, little is known about where these attacks originate, and revealing the attack sources is a non-trivial problem due to the spoofed nature of the traffic. In this paper, we present novel techniques to uncover the infrastructures behind amplification DDoS attacks. We follow a two-step approach to tackle this challenge: First, we develop a methodology to impose a fingerprint on scanners that perform the reconnaissance for amplification attacks that allows us to link subsequent attacks back to the scanner. Our methodology attributes over 58% of attacks to a scanner with a confidence of over 99.9%. Second, we use Time-to-Live-based trilateration techniques to map scanners to the actual infrastructures launching the attacks. Using this technique, we identify 34 networks as being the source for amplification attacks at 98\textbackslash% certainty.