Biblio
Ensuring system survivability in the wake of advanced persistent threats is a big challenge that the security community is facing to ensure critical infrastructure protection. In this paper, we define metrics and models for the assessment of coordinated massive malware campaigns targeting critical infrastructure sectors. First, we develop an analytical model that allows us to capture the effect of neighborhood on different metrics (infection probability and contagion probability). Then, we assess the impact of putting operational but possibly infected nodes into quarantine. Finally, we study the implications of scanning nodes for early detection of malware (e.g., worms), accounting for false positives and false negatives. Evaluating our methodology using a small four-node topology, we find that malware infections can be effectively contained by using quarantine and appropriate rates of scanning for soft impacts.
Most network traffic analysis applications are designed to discover malicious activity by only relying on high-level flow-based message properties. However, to detect security breaches that are specifically designed to target one network (e.g., Advanced Persistent Threats), deep packet inspection and anomaly detection are indispensible. In this paper, we focus on how we can support experts in discovering whether anomalies at message level imply a security risk at network level. In SNAPS (Semantic Network traffic Analysis through Projection and Selection), we provide a bottom-up pixel-oriented approach for network traffic analysis where the expert starts with low-level anomalies and iteratively gains insight in higher level events through the creation of multiple selections of interest in parallel. The tight integration between visualization and machine learning enables the expert to iteratively refine anomaly scores, making the approach suitable for both post-traffic analysis and online monitoring tasks. To illustrate the effectiveness of this approach, we present example explorations on two real-world data sets for the detection and understanding of potential Advanced Persistent Threats in progress.
Advanced persistent threat (APT) is becoming a major threat to cyber security. As APT attacks are often launched by well funded entities that are persistent and stealthy in achieving their goals, they are highly challenging to combat in a cost-effective way. The situation becomes even worse when a sophisticated attacker is further assisted by an insider with privileged access to the inside information. Although stealthy attacks and insider threats have been considered separately in previous works, the coupling of the two is not well understood. As both types of threats are incentive driven, game theory provides a proper tool to understand the fundamental tradeoffs involved. In this paper, we propose the first three-player attacker-defender-insider game to model the strategic interactions among the three parties. Our game extends the two-player FlipIt game model for stealthy takeover by introducing an insider that can trade information to the attacker for a profit. We characterize the subgame perfect equilibria of the game with the defender as the leader and the attacker and the insider as the followers, under two different information trading processes. We make various observations and discuss approaches for achieving more efficient defense in the face of both APT and insider threats.
What you see is not definitely believable is not a rare case in the cyber security monitoring. However, due to various tricks of camouflages, such as packing or virutal private network (VPN), detecting "advanced persistent threat"(APT) by only signature based malware detection system becomes more and more intractable. On the other hand, by carefully modeling users' subsequent behaviors of daily routines, probability for one account to generate certain operations can be estimated and used in anomaly detection. To the best of our knowledge so far, a novel behavioral analytic framework, which is dedicated to analyze Active Directory domain service logs and to monitor potential inside threat, is now first proposed in this project. Experiments on real dataset not only show that the proposed idea indeed explores a new feasible direction for cyber security monitoring, but also gives a guideline on how to deploy this framework to various environments.
During an advanced persistent threat (APT), an attacker group usually establish more than one C&C server and these C&C servers will change their domain names and corresponding IP addresses over time to be unseen by anti-virus software or intrusion prevention systems. For this reason, discovering and catching C&C sites becomes a big challenge in information security. Based on our observations and deductions, a malware tends to contain a fixed user agent string, and the connection behaviors generated by a malware is different from that by a benign service or a normal user. This paper proposed a new method comprising filtering and clustering methods to detect C&C servers with a relatively higher coverage rate. The experiments revealed that the proposed method can successfully detect C&C Servers, and the can provide an important clue for detecting APT.
A fundamental drawback of current anomaly detection systems (ADSs) is the ability of a skilled attacker to evade detection. This is due to the flawed assumption that an attacker does not have any information about an ADS. Advanced persistent threats that are capable of monitoring network behavior can always estimate some information about ADSs which makes these ADSs susceptible to evasion attacks. Hence in this paper, we first assume the role of an attacker to launch evasion attacks on anomaly detection systems. We show that the ADSs can be completely paralyzed by parameter estimation attacks. We then present a mathematical model to measure evasion margin with the aim to understand the science of evasion due to ADS design. Finally, to minimize the evasion margin, we propose a key-based randomization scheme for existing ADSs and discuss its robustness against evasion attacks. Case studies are presented to illustrate the design methodology and extensive experimentation is performed to corroborate the results.
Cyber-physical systems (CPSs), due to their direct influence on the physical world, have to meet extended security and dependability requirements. This is particularly true for CPS that operate in close proximity to humans or that control resources that, when tampered with, put all our lives at stake. In this paper, we review the challenges and some early solutions that arise at the architectural and operating-system level when we require cyber-physical systems and CPS infrastructure to withstand advanced and persistent threats. We found that although some of the challenges we identified are already matched by rudimentary solutions, further research is required to ensure sustainable and dependable operation of physically exposed CPS infrastructure and, more importantly, to guarantee graceful degradation in case of malfunction or attack.
Basic Input Output System (BIOS) is the most important component of a computer system by virtue of its role i.e., it holds the code which is executed at the time of startup. It is considered as the trusted computing base, and its integrity is extremely important for smooth functioning of the system. On the contrary, BIOS of new computer systems (servers, laptops, desktops, network devices, and other embedded systems) can be easily upgraded using a flash or capsule mechanism which can add new vulnerabilities either through malicious code, or by accidental incidents, and deliberate attack. The recent attack on Iranian Nuclear Power Plant (Stuxnet) [1:2] is an example of advanced persistent attack. This attack vector adds a new dimension into the information security (IS) spectrum, which needs to be guarded by implementing a holistic approach employed at enterprise level. Malicious BIOS upgrades can also cause denial of service, stealing of information or addition of new backdoors which can be exploited by attackers for causing business loss, passive eaves dropping or total destruction of system without knowledge of user. To address this challenge a capability for verification of BIOS integrity needs to be developed and due diligence must be observed for proactive resolution of the issue. This paper explains the BIOS Integrity threats and presents a prevention strategy for effective and proactive resolution.
- « first
- ‹ previous
- 1
- 2
- 3
- 4