Biblio
The intranets in modern organizations are facing severe data breaches and critical resource misuses. By reusing user credentials from compromised systems, Advanced Persistent Threat (APT) attackers can move laterally within the internal network. A promising new approach called deception technology makes the network administrator (i.e., defender) able to deploy decoys to deceive the attacker in the intranet and trap him into a honeypot. Then the defender ought to reasonably allocate decoys to potentially insecure hosts. Unfortunately, existing APT-related defense resource allocation models are infeasible because of the neglect of many realistic factors.In this paper, we make the decoy deployment strategy feasible by proposing a game-theoretic model called the APT Deception Game to describe interactions between the defender and the attacker. More specifically, we decompose the decoy deployment problem into two subproblems and make the problem solvable. Considering the best response of the attacker who is aware of the defender’s deployment strategy, we provide an elitist reservation genetic algorithm to solve this game. Simulation results demonstrate the effectiveness of our deployment strategy compared with other heuristic strategies.
CISA is tracking a significant cyber incident impacting enterprise networks across federal, state, and local governments, as well as critical infrastructure entities and other private sector organizations. An advanced persistent threat (APT) actor is responsible for compromising the SolarWinds Orion software supply chain, as well as widespread abuse of commonly used authentication mechanisms. This threat actor has the resources, patience, and expertise to gain access to and privileges over highly sensitive information if left unchecked. CISA urges organizations to prioritize measures to identify and address this threat.
Advanced Persistent Threat (APT) is a stealthy, continuous and sophisticated method of network attacks, which can cause serious privacy leakage and millions of dollars losses. In this paper, we introduce a new game-theoretic framework of the interaction between a defender who uses limited Security Resources(SRs) to harden network and an attacker who adopts a multi-stage plan to attack the network. The game model is derived from Stackelberg games called a Multi-stage Maze Network Game (M2NG) in which the characteristics of APT are fully considered. The possible plans of the attacker are compactly represented using attack graphs(AGs), but the compact representation of the attacker's strategies presents a computational challenge and reaching the Nash Equilibrium(NE) is NP-hard. We present a method that first translates AGs into Markov Decision Process(MDP) and then achieves the optimal SRs allocation using the policy hill-climbing(PHC) algorithm. Finally, we present an empirical evaluation of the model and analyze the scalability and sensitivity of the algorithm. Simulation results exhibit that our proposed reinforcement learning-based SRs allocation is feasible and efficient.
The advanced persistent threat (APT) landscape has been studied without quantifiable data, for which indicators of compromise (IoC) may be uniformly analyzed, replicated, or used to support security mechanisms. This work culminates extensive academic and industry APT analysis, not as an incremental step in existing approaches to APT detection, but as a new benchmark of APT related opportunity. We collect 15,259 APT IoC hashes, retrieving subsequent sandbox execution logs across 41 different file types. This work forms an initial focus on Windows-based threat detection. We present a novel Windows APT executable (APT-EXE) dataset, made available to the research community. Manual and statistical analysis of the APT-EXE dataset is conducted, along with supporting feature analysis. We draw upon repeat and common APT paths access, file types, and operations within the APT-EXE dataset to generalize APT execution footprints. A baseline case analysis successfully identifies a majority of 117 of 152 live APT samples from campaigns across 2018 and 2019.
Advanced persistent threats (APT) have increased in recent times as a result of the rise in interest by nation-states and sophisticated corporations to obtain high profile information. Typically, APT attacks are more challenging to detect since they leverage zero-day attacks and common benign tools. Furthermore, these attack campaigns are often prolonged to evade detection. We leverage an approach that uses a provenance graph to obtain execution traces of host nodes in order to detect anomalous behavior. By using the provenance graph, we extract features that are then used to train an online adaptive metric learning. Online metric learning is a deep learning method that learns a function to minimize the separation between similar classes and maximizes the separation between dis-similar instances. We compare our approach with baseline models and we show our method outperforms the baseline models by increasing detection accuracy on average by 11.3 % and increases True positive rate (TPR) on average by 18.3 %.